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Section S1: Basics of single-cell dielectric spectroscopy 

The frequency-dependent impedance of a single cell conveys information on cell size and cell dielectric properties. 
However, it also includes effects from the measurement hardware (non-linear behaviour of the electronics and chip 
parasitics), which need to be removed. As detailed in Ref.1, the cell impedance is normalised against the bead 
impedance according to the following relationship:  

𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  (

𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

= 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑  

𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑               (1) 

where 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙and 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑  denote the complex, frequency-dependent Clausius-Mossotti factor of cell and bead, 

respectively; 𝑟𝑐𝑒𝑙𝑙  and 𝑟𝑏𝑒𝑎𝑑  denote cell and bead radius, respectively; 𝑆𝑐𝑒𝑙𝑙  and 𝑆𝑏𝑒𝑎𝑑  denote the complex, 

frequency-dependent peak amplitude of the measured differential impedance signals of cell and bead. Here 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑  

and 𝑟𝑏𝑒𝑎𝑑  are regarded as known quantities, whereas 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  and 𝑟𝑐𝑒𝑙𝑙  are unknowns to be determined. The Clausius-

Mossotti factor of the cell is given by: 
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where 휀�̃�𝑒𝑑  is the complex permittivity of the medium and 휀�̃�𝑒𝑙𝑙  is the complex permittivity of the cell, which 
incorporates all the key information regarding the cell dielectric properties. Assuming a single-shell model, 휀�̃�𝑒𝑙𝑙 can 
be derived from2: 
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where 휀�̃�𝑒𝑚 and  휀�̃�𝑦𝑡 are the complex permittivities of the membrane and the cytoplasm, respectively, 𝑑𝑚𝑒𝑚  is the 

membrane thickness, and 𝑟 is the cell radius. Under the assumption 𝑑𝑚𝑒𝑚 ≪ 𝑟 it simplifies to3: 
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The complex permittivities of the membrane and the cytoplasm can, in turn, be calculated using: 

휀�̃�𝑒𝑚 = 휀𝑚𝑒𝑚 + 𝜎𝑚𝑒𝑚/𝑗𝜔 ,   휀�̃�𝑦𝑡 = 휀𝑐𝑦𝑡 + 𝜎𝑐𝑦𝑡/𝑗𝜔               (5) 

where 휀 and 𝜎 are permittivities and conductivities for each component, respectively, and 𝜔 is the angular 
frequency. The specific membrane capacitance is given by 𝐶𝑚𝑒𝑚 = 휀𝑚𝑒𝑚/𝑑𝑚𝑒𝑚 . Fig. S1 illustrates how the Clausius-
Mossotti factor, and hence the impedance spectrum, changes following small perturbations in cell electrical 
properties (shaded). Because the cell membrane has a very high electrical resistance, at low AC frequencies (<1MHz), 

cells behave as insulating particles (𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 ≅ 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑). Therefore low-frequency impedance measurements provide a 
direct measurement of (electrical) cell volume. 



 

Fig. S1 Calculated examples of the (A) Real and (B) Imaginary parts of the Clausius-Mossotti factor of a spherical red blood cell 
(radius=2.75 μm, membrane thickness 4.5 nm, cytoplasm conductivity = 0.6 S/m, membrane permittivity = 4.5 ε0, cytoplasm 
permittivity = 80 ε0) suspended in phosphate-buffered saline (conductivity = 1.6 S/m). The shaded regions correspond to three 
frequency windows where differences in the cell electrical properties can be measured, corresponding to: membrane capacitance 
(green, 3-7 ε0), cytoplasm conductivity (red, 0.5-0.7 S/m) and cytoplasm permittivity (blue, 70-90 ε0). Reprinted with permission 
from Ref.1 

 

 

Fig. S2 Standard approach to single-cell dielectric characterization. (A) The complex peak amplitudes at eight frequencies are 
extracted from the measured impedance traces (e.g., by peak-finding or correlation with a bipolar Gaussian template). (B) 

According to the right-hand side of eq.(1), the measured complex peak amplitudes (𝑆𝑐𝑒𝑙𝑙) normalised with respect to the bead 

population (𝑆𝑏𝑒𝑎𝑑) and multiplied by 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑 = −1/2 provide the experimental impedance spectrum (i.e. the real and imaginary 

parts of the Clausius-Mossotti factor 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  multiplied by the ratio between cell and bead volume fractions, 
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 , cf. 

left-hand side of eq. (1)). The single-shell model (eqs. (2)-(5)) is used to represent the Clausius-Mossotti factor 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 . Accordingly, 

least-square fitting of the experimental impedance spectrum yields the cell radius (𝑟) and the cell intrinsic dielectric properties, 
namely, membrane capacitance 𝐶𝑚𝑒𝑚, cytoplasm conductivity 𝜎𝑐𝑦𝑡  and cytoplasm permittivity 휀𝑐𝑦𝑡. 

  



Section S2: Data augmentation to mimic velocity changes 

 

Fig. S3 Two examples of signal stretching and resampling at original sampling rate: (A) stretch=0.71, (B) stretch=1.41. Denoting 
by 𝑣 the original particle velocity, the resulting particle velocities are 𝑣′ = 𝑣/0.71 and 𝑣′ = 𝑣/1.41, respectively.   



Section S3: Neural networks for single-cell dielectric spectroscopy from raw impedance data 

streams 

Figures S4 and S5 show details of the neural networks used for single-cell dielectric spectroscopy. The software was 

implemented in Matlab (R2019b). Default settings were used for parameters that are not explicitly mentioned. 

Computations were run on a processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz (128 GB RAM) with Nvidia Titan 

X GPU. 

 

 

Fig. S4 Architecture of the classification Recurrent Neural Network (RNN) used for data stream segmentation (bi-LSTM = 
bidirectional Long Short-Term Memory). The data stream (~250 s, sampled at 𝑓𝑠 = 57.6 kHz; 8 frequency channels) was split into 
~20k portions of length L=675 samples (~12 ms). These portions were randomly divided into the training set (70%), validation set 
(15%), and testing set (15%). Each portion is composed of 16 sequences (real part ℝ and imaginary part ℑ, at each frequency), 
which are the input of the network. The final classification layer outputs a binary sequence wherein 0 indicates noise and 1 
indicates particle signal, thus yielding the data stream segmentation mask. Training parameters were: 16 epochs, 128 mini-batch 
size. Data stream splitting may result in partially caught events at the beginning or at the end of a portion. Accordingly, detected 
events with length shorter than a threshold 𝑙𝑚𝑖𝑛 were discarded (𝑙𝑚𝑖𝑛  was set to half of the median peak-to-peak time). 

 



 

Fig. S5 Architecture of the regression Convolutional Neural Network (CNN) used for dielectric characterization (ReLU = Rectifier 
Linear Unit). For each detected cell, the network receives in input the 2-colour impedance images (i.e., the rows correspond to 
the eight frequency channels, the columns correspond to the different time samples, and the two colours are the real and 
imaginary signal components). The set of impedance images (N>20k) was randomly divided into the training set (70%), validation 
set (15%), and testing set (15%). The final regression layer predicts the cell size (radius, 𝑟) and the cell intrinsic dielectric 
properties, namely, membrane capacitance 𝐶𝑚𝑒𝑚, cytoplasm conductivity 𝜎𝑐𝑦𝑡  and cytoplasm permittivity 휀𝑐𝑦𝑡. Training 

parameters were: 512 epochs, 128 mini-batch size. The two CNNs used for system normalization (i.e., classification beads/others, 
and regression on bead amplitudes) share a similar architecture. In the classification network, the regression layer is replaced by 
a softmax layer followed by a classification layer. 

 

  



Box S1 shows, as an example, the Matlab code for training and test of the regression CNN used for dielectric 

spectroscopy (cf. Fig. S5). Network training calls the routine  CNN_regression_dielectric_characterization.m, whose 

script is shown in Box S2. Network test calls Matlab’s built-in function predict.m. 

Box S1  

 

 

  

% Inputs -------------------------------------------------------------- 

% 

% H=8; % number of frequencies 

% L=106; % maximum event length (sample), typical 

% C=2; % number of colours (real and imaginary parts) 

% inputSize=[H, L, C]; 

% filterSize=[5, 5]; 

% numFilters=20; 

% numOutput=4; % number of features to be estimated 

% 

% Acquired signals (4-D: frequency, sample, real/imag, event) 

% XTrain:      4-D double with size [H, L, C, NTrain] 

% XValidation: 4-D double with size [H, L, C, NValidation] 

% XTest:       4-D double with size [H, L, C, NTest] 

% Target features (2-D: event, feature) 

% YTrain:      2-D double with size [NTrain,      numOutput] 

% YValidation: 2-D double with size [NValidation, numOutput] 

% YTest:       2-D double with size [NTest,       numOutput] 

% 

% NTrain     =19k; % cardinality of train dataset, typical 

% NValidation= 4k; % cardinality of validation dataset, typical 

% NTest      = 4k; % cardinality of test dataset, typical 

% 

% values of learning parameters, typical 

% maxEpochs=512; 

% miniBatchSize=128; 

% GradientThreshold=1; 

% 

% Outputs ------------------------------------------------------------- 

% 

% net:             trained neural network 

% info:            training information 

% training_time:   training time 

% 

% YPred:           2-D double with size [NTest, numOutput] 

% prediction_time: prediction time 

  

% Build and train network 

[ ... 

    ... % neural network, relevant information, training time 

    net, info, training_time]=CNN_regression_dielectric_characterization( ... 

    ... % training and validation datasets 

    XTrain, YTrain, XValidation, YValidation, ... 

    ... % layer parameters 

    inputSize, filterSize, numFilters, numOutput, ... 

    ... % learning parameters 

    maxEpochs, miniBatchSize, GradientThreshold); 

  

% Test trained network 

t_start=tic; 

YPred = predict(net,XTest, ... 

    'MiniBatchSize',miniBatchSize, ... 

    'SequenceLength','longest' ... 

    ); 

prediction_time=toc(t_start); 



Box S2  

 

  
function [ ... 

    ... % neural network, relevant information, training time 

    net, info, training_time]=CNN_regression_dielectric_characterization( ... 

    ... % training and validation datasets 

    XTrain, YTrain, XValidation, YValidation, ... 

    ... % layer parameters 

    inputSize, filterSize, numFilters, numOutput, ... 

    ... % learning parameters 

    maxEpochs, miniBatchSize, GradientThreshold) 

  

% ------------------------------------------------------------------------- 

% define network 

% ------------------------------------------------------------------------- 

  

layers = [ 

    imageInputLayer(inputSize) 

     

    convolution2dLayer(filterSize,numFilters,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

     

    convolution2dLayer(filterSize,numFilters,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

     

    convolution2dLayer(filterSize,numFilters,'Padding','same') 

    batchNormalizationLayer 

    reluLayer 

     

    fullyConnectedLayer(numOutput,'Name','fc') 

    regressionLayer('Name','regressionoutput')]; 

  

% validation frequency 

validationFrequency = floor(numel(YTrain)/miniBatchSize); 

  

% training options 

options = trainingOptions('adam', ... 

    'ExecutionEnvironment','auto', ... 

    'GradientThreshold',GradientThreshold, ... 

    'MaxEpochs',maxEpochs, ... 

    'MiniBatchSize',miniBatchSize, ... 

    'SequenceLength','longest', ... 

    'Shuffle','every-epoch', ... 

    'VerboseFrequency',validationFrequency, ... 

    'ValidationData',{XValidation,YValidation}, ... 

    'ValidationFrequency',validationFrequency, ... 

    'Verbose',false, ... 

    'Plots','training-progress'); 

  

% ------------------------------------------------------------------------- 

% train network 

% ------------------------------------------------------------------------- 

t_start=tic; 

[net,info] = trainNetwork(XTrain,YTrain,layers,options); 

training_time=toc(t_start); 

  

end 



 

Fig. S6 Scatter plot of cytoplasm conductivity 𝜎𝑐𝑦𝑡  vs cytoplasm permittivity 휀𝑐𝑦𝑡, along with their marginal histograms. Target 

(Targ.) features and predicted (Pred.) features are shown in blue and red, respectively. The two separate populations of ghosts 
and sphered RBCs are indicated.  



Section S4: System normalization results 

 

Fig. S7 (A) Confusion matrix for beads/non-beads classification. The rows correspond to the predicted class (Output Class), and 
the columns correspond to the true class (Target Class). Both the number of observations and the percentage of the total number 
of observations are shown in each cell. Normalizations by row (i.e., precision) and by column (i.e., recall) are also reported. (B) 
Histogram and density plot of target (Targ.) and predicted (Pred.) amplitudes (real and imaginary parts of the peak amplitudes of 

the eight frequency channels are collected). Correlation coefficient R and average relative errors µE are also reported within the 

density plot. 

  



Section S5: Example of a triplet of red blood cells 

 

Fig. S8 Example of an event involving three red blood cells flowing through the first measurement zone (cf. Fig. 3A, main text). 
Flow direction is from left to right. Seven sequential frames (fr.) are shown (78 μs time interval), from top to bottom. Successive 
positions of every single cell are marked with a circle and linked with a dotted line. Unused lateral electrodes have been 
shadowed. Inset (i) is the measured signal 𝑠1(𝑡). Inset (ii) is the composing single-particle signals (colours after circle markers). 
The cell marked in red and the cell marked in green almost simultaneously enter the measurement zone (fr. 3). However, the 
former is slower than the latter and leaves the measurement zone well after the cell marked in magenta has entered. Therefore, 
the signals produced by single particles interfere with each other, and only two pairs of positive/negative peaks appear in the 
recorded signal. Adapted with permission from Ref.4 

  



Section S6: Generation of synthetic clusters (i.e., multi-particle signals) 

 

Fig. S9 Single-particle signals 𝑠1(𝑡) and 𝑠2(𝑡) are extracted from experimental data streams relevant to (A) beads or (B) RBCs at 
low concentration (c=105 particle/ml). More than 40000 single particles (equal proportion of beads and RBCs) are collected to 
build the training dataset. Each pair of single-particle signals (𝑠1(𝑡) and 𝑠2(𝑡)) is subjected to amplitude data augmentation, with 
five values of amplification factor. The logarithm of the amplification factor is randomly uniformly distributed in [0.25,4]. An 
example is shown in panel (C), original signals, and panel (D), augmented signals.  

 

Fig. S10 Panel (A) shows the signals 𝑠1(𝑡) and 𝑠2(𝑡) of an exemplary synthetic triplet. Panels (B)-(E) show the stretched and 
resampled versions, along with the corresponding stretch values. The resulting particle velocities 𝑣′are obtained by dividing the 
original velocity 𝑣 by the stretch, as indicated in panels (B)-(E).   



Section S7: Neural networks coincidence resolution from two electrical snapshots 

Figures S11 and S12 show details of the neural networks used for coincidence resolution. As for Section S3, the 

software was implemented in Matlab; default settings were used for parameters that are not explicitly mentioned, 

and a processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz (128 GB RAM) with Nvidia Titan X GPU was used. 

 

 

Fig. S11 Architecture of the classification CNN used for particle counting (i.e., identification of the number of individual composing 
particles). The network receives in input an image with two rows (the signals 𝑠1(𝑡) and 𝑠2(𝑡) relevant to the first and second 
measuring zones, respectively). The final classification layer predicts the number of involved particles: 1 (singlet), 2 (doublet), 3 
(triplet), or more. Training parameters were: 64 epochs, 128 mini-batch size. 



 

Fig. S12 Architecture of the regression RNNs used to characterise individual composing particles (RNN-s, for singlets; RNN-d, for 
doublets; RNN-t, for triplets; cf. Fig. 3B, main text). The networks receive in input two sequences (the signals 𝑠1(𝑡) and 𝑠2(𝑡) 
relevant to the first and second measuring zones, respectively). The final regression layer predicts the features (central time 𝑡𝑐, 
peal-to-peak time 𝛿, pulse width 𝜎, and peak amplitude 𝑎) of each composing event (1 for RNN-s, 2 for RNN-d, and 3 for 
RNN-t), in both measuring zones. Training parameters were: 64 epochs for RNN-s, 256 epochs for RNN-d, 512 epochs for RNN-t, 
and 128 mini-batch size (all networks). 

 

  



Section S8: Coincidence resolution – density plots  

 

Fig. S13 Density plots of target (Targ.) and predicted (Pred.) features (i.e., central time, peak-to-peak time, pulse width, and 
amplitude) of the single-particle signals. The collection of single-particle features from singlets, doublets, and triplets are plotted 
on separate rows (from top to bottom). 
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