
Supplementary Material to:

Deciphering impedance cytometry signals with neural networks

Federica Caselli,*a Riccardo Reale,b Adele De Ninno,c Daniel Spencer,d Hywel Morgan d and Paolo Bisegna a

a Department of Civil Engineering and Computer Science, University University of Rome Tor Vergata, Rome, Italy. E-mail: caselli@ing.uniroma2.it
b Center for Life Nano Science@Sapienza, Italian Institute of Technology (IIT), Rome, Italy.
c Italian National Research Council - Institute for Photonics and Nanotechnologies (CNR - IFN), Rome, Italy.
d School of Electronics and Computing Science, and Institute for Life Sciences, University of Southampton, Highfield, Southampton, UK.

Lab Chip, 2022, DOI: 10.1039/D2LC00028H

Electronic Supplementary Material (ESI) for Lab on a Chip.
This journal is © The Royal Society of Chemistry 2022

Section S1: Basics of single-cell dielectric spectroscopy

The frequency-dependent impedance of a single cell conveys information on cell size and cell dielectric properties.
However, it also includes effects from the measurement hardware (non-linear behaviour of the electronics and chip
parasitics), which need to be removed. As detailed in Ref.1, the cell impedance is normalised against the bead
impedance according to the following relationship:

𝑓𝐶𝑀
𝑐𝑒𝑙𝑙  (

𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑)
3

= 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑  

𝑆𝑐𝑒𝑙𝑙

𝑆𝑏𝑒𝑎𝑑 (1)

where 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙and 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑 denote the complex, frequency-dependent Clausius-Mossotti factor of cell and bead,

respectively; 𝑟𝑐𝑒𝑙𝑙 and 𝑟𝑏𝑒𝑎𝑑 denote cell and bead radius, respectively; 𝑆𝑐𝑒𝑙𝑙 and 𝑆𝑏𝑒𝑎𝑑 denote the complex,

frequency-dependent peak amplitude of the measured differential impedance signals of cell and bead. Here 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑

and 𝑟𝑏𝑒𝑎𝑑 are regarded as known quantities, whereas 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 and 𝑟𝑐𝑒𝑙𝑙 are unknowns to be determined. The Clausius-

Mossotti factor of the cell is given by:

𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 =

�̃�𝑐𝑒𝑙𝑙−�̃�𝑚𝑒𝑑

�̃�𝑐𝑒𝑙𝑙+2�̃�𝑚𝑒𝑑
 (2)

where 휀�̃�𝑒𝑑 is the complex permittivity of the medium and 휀�̃�𝑒𝑙𝑙 is the complex permittivity of the cell, which
incorporates all the key information regarding the cell dielectric properties. Assuming a single-shell model, 휀�̃�𝑒𝑙𝑙 can
be derived from2:

휀�̃�𝑒𝑙𝑙 = 휀�̃�𝑒𝑚

𝛾3+2(
�̃�𝑐𝑦𝑡−�̃�𝑚𝑒𝑚

�̃�𝑐𝑦𝑡+2�̃�𝑚𝑒𝑚
)

𝛾3−(
�̃�𝑐𝑦𝑡−�̃�𝑚𝑒𝑚

�̃�𝑐𝑦𝑡+2�̃�𝑚𝑒𝑚
)

 , 𝛾 =
𝑟

𝑟−𝑑𝑚𝑒𝑚
 (3)

where 휀�̃�𝑒𝑚 and 휀�̃�𝑦𝑡 are the complex permittivities of the membrane and the cytoplasm, respectively, 𝑑𝑚𝑒𝑚 is the

membrane thickness, and 𝑟 is the cell radius. Under the assumption 𝑑𝑚𝑒𝑚 ≪ 𝑟 it simplifies to3:

휀�̃�𝑒𝑙𝑙 ≅ 휀�̃�𝑦𝑡
𝜆

1+𝜆
 , 𝜆 =

�̃�𝑚𝑒𝑚 𝑑𝑚𝑒𝑚⁄

�̃�𝑐𝑦𝑡 𝑟⁄
 (4)

The complex permittivities of the membrane and the cytoplasm can, in turn, be calculated using:

휀�̃�𝑒𝑚 = 휀𝑚𝑒𝑚 + 𝜎𝑚𝑒𝑚/𝑗𝜔 , 휀�̃�𝑦𝑡 = 휀𝑐𝑦𝑡 + 𝜎𝑐𝑦𝑡/𝑗𝜔 (5)

where 휀 and 𝜎 are permittivities and conductivities for each component, respectively, and 𝜔 is the angular
frequency. The specific membrane capacitance is given by 𝐶𝑚𝑒𝑚 = 휀𝑚𝑒𝑚/𝑑𝑚𝑒𝑚 . Fig. S1 illustrates how the Clausius-
Mossotti factor, and hence the impedance spectrum, changes following small perturbations in cell electrical
properties (shaded). Because the cell membrane has a very high electrical resistance, at low AC frequencies (<1MHz),

cells behave as insulating particles (𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 ≅ 𝑓𝐶𝑀

𝑏𝑒𝑎𝑑). Therefore low-frequency impedance measurements provide a
direct measurement of (electrical) cell volume.

Fig. S1 Calculated examples of the (A) Real and (B) Imaginary parts of the Clausius-Mossotti factor of a spherical red blood cell
(radius=2.75 μm, membrane thickness 4.5 nm, cytoplasm conductivity = 0.6 S/m, membrane permittivity = 4.5 ε0, cytoplasm
permittivity = 80 ε0) suspended in phosphate-buffered saline (conductivity = 1.6 S/m). The shaded regions correspond to three
frequency windows where differences in the cell electrical properties can be measured, corresponding to: membrane capacitance
(green, 3-7 ε0), cytoplasm conductivity (red, 0.5-0.7 S/m) and cytoplasm permittivity (blue, 70-90 ε0). Reprinted with permission
from Ref.1

Fig. S2 Standard approach to single-cell dielectric characterization. (A) The complex peak amplitudes at eight frequencies are
extracted from the measured impedance traces (e.g., by peak-finding or correlation with a bipolar Gaussian template). (B)

According to the right-hand side of eq.(1), the measured complex peak amplitudes (𝑆𝑐𝑒𝑙𝑙) normalised with respect to the bead

population (𝑆𝑏𝑒𝑎𝑑) and multiplied by 𝑓𝐶𝑀
𝑏𝑒𝑎𝑑 = −1/2 provide the experimental impedance spectrum (i.e. the real and imaginary

parts of the Clausius-Mossotti factor 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 multiplied by the ratio between cell and bead volume fractions,

𝜙𝑐𝑒𝑙𝑙

𝜙𝑏𝑒𝑎𝑑 = (
𝑟𝑐𝑒𝑙𝑙

𝑟𝑏𝑒𝑎𝑑
)

3

 , cf.

left-hand side of eq. (1)). The single-shell model (eqs. (2)-(5)) is used to represent the Clausius-Mossotti factor 𝑓𝐶𝑀
𝑐𝑒𝑙𝑙 . Accordingly,

least-square fitting of the experimental impedance spectrum yields the cell radius (𝑟) and the cell intrinsic dielectric properties,
namely, membrane capacitance 𝐶𝑚𝑒𝑚, cytoplasm conductivity 𝜎𝑐𝑦𝑡 and cytoplasm permittivity 휀𝑐𝑦𝑡.

Section S2: Data augmentation to mimic velocity changes

Fig. S3 Two examples of signal stretching and resampling at original sampling rate: (A) stretch=0.71, (B) stretch=1.41. Denoting
by 𝑣 the original particle velocity, the resulting particle velocities are 𝑣′ = 𝑣/0.71 and 𝑣′ = 𝑣/1.41, respectively.

Section S3: Neural networks for single-cell dielectric spectroscopy from raw impedance data

streams

Figures S4 and S5 show details of the neural networks used for single-cell dielectric spectroscopy. The software was

implemented in Matlab (R2019b). Default settings were used for parameters that are not explicitly mentioned.

Computations were run on a processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz (128 GB RAM) with Nvidia Titan

X GPU.

Fig. S4 Architecture of the classification Recurrent Neural Network (RNN) used for data stream segmentation (bi-LSTM =
bidirectional Long Short-Term Memory). The data stream (~250 s, sampled at 𝑓𝑠 = 57.6 kHz; 8 frequency channels) was split into
~20k portions of length L=675 samples (~12 ms). These portions were randomly divided into the training set (70%), validation set
(15%), and testing set (15%). Each portion is composed of 16 sequences (real part ℝ and imaginary part ℑ, at each frequency),
which are the input of the network. The final classification layer outputs a binary sequence wherein 0 indicates noise and 1
indicates particle signal, thus yielding the data stream segmentation mask. Training parameters were: 16 epochs, 128 mini-batch
size. Data stream splitting may result in partially caught events at the beginning or at the end of a portion. Accordingly, detected
events with length shorter than a threshold 𝑙𝑚𝑖𝑛 were discarded (𝑙𝑚𝑖𝑛 was set to half of the median peak-to-peak time).

Fig. S5 Architecture of the regression Convolutional Neural Network (CNN) used for dielectric characterization (ReLU = Rectifier
Linear Unit). For each detected cell, the network receives in input the 2-colour impedance images (i.e., the rows correspond to
the eight frequency channels, the columns correspond to the different time samples, and the two colours are the real and
imaginary signal components). The set of impedance images (N>20k) was randomly divided into the training set (70%), validation
set (15%), and testing set (15%). The final regression layer predicts the cell size (radius, 𝑟) and the cell intrinsic dielectric
properties, namely, membrane capacitance 𝐶𝑚𝑒𝑚, cytoplasm conductivity 𝜎𝑐𝑦𝑡 and cytoplasm permittivity 휀𝑐𝑦𝑡. Training

parameters were: 512 epochs, 128 mini-batch size. The two CNNs used for system normalization (i.e., classification beads/others,
and regression on bead amplitudes) share a similar architecture. In the classification network, the regression layer is replaced by
a softmax layer followed by a classification layer.

Box S1 shows, as an example, the Matlab code for training and test of the regression CNN used for dielectric

spectroscopy (cf. Fig. S5). Network training calls the routine CNN_regression_dielectric_characterization.m, whose

script is shown in Box S2. Network test calls Matlab’s built-in function predict.m.

Box S1

% Inputs --

%

% H=8; % number of frequencies

% L=106; % maximum event length (sample), typical

% C=2; % number of colours (real and imaginary parts)

% inputSize=[H, L, C];

% filterSize=[5, 5];

% numFilters=20;

% numOutput=4; % number of features to be estimated

%

% Acquired signals (4-D: frequency, sample, real/imag, event)

% XTrain: 4-D double with size [H, L, C, NTrain]

% XValidation: 4-D double with size [H, L, C, NValidation]

% XTest: 4-D double with size [H, L, C, NTest]

% Target features (2-D: event, feature)

% YTrain: 2-D double with size [NTrain, numOutput]

% YValidation: 2-D double with size [NValidation, numOutput]

% YTest: 2-D double with size [NTest, numOutput]

%

% NTrain =19k; % cardinality of train dataset, typical

% NValidation= 4k; % cardinality of validation dataset, typical

% NTest = 4k; % cardinality of test dataset, typical

%

% values of learning parameters, typical

% maxEpochs=512;

% miniBatchSize=128;

% GradientThreshold=1;

%

% Outputs ---

%

% net: trained neural network

% info: training information

% training_time: training time

%

% YPred: 2-D double with size [NTest, numOutput]

% prediction_time: prediction time

% Build and train network

[...

 ... % neural network, relevant information, training time

 net, info, training_time]=CNN_regression_dielectric_characterization(...

 ... % training and validation datasets

 XTrain, YTrain, XValidation, YValidation, ...

 ... % layer parameters

 inputSize, filterSize, numFilters, numOutput, ...

 ... % learning parameters

 maxEpochs, miniBatchSize, GradientThreshold);

% Test trained network

t_start=tic;

YPred = predict(net,XTest, ...

 'MiniBatchSize',miniBatchSize, ...

 'SequenceLength','longest' ...

);

prediction_time=toc(t_start);

Box S2

function [...

 ... % neural network, relevant information, training time

 net, info, training_time]=CNN_regression_dielectric_characterization(...

 ... % training and validation datasets

 XTrain, YTrain, XValidation, YValidation, ...

 ... % layer parameters

 inputSize, filterSize, numFilters, numOutput, ...

 ... % learning parameters

 maxEpochs, miniBatchSize, GradientThreshold)

% ---

% define network

% ---

layers = [

 imageInputLayer(inputSize)

 convolution2dLayer(filterSize,numFilters,'Padding','same')

 batchNormalizationLayer

 reluLayer

 convolution2dLayer(filterSize,numFilters,'Padding','same')

 batchNormalizationLayer

 reluLayer

 convolution2dLayer(filterSize,numFilters,'Padding','same')

 batchNormalizationLayer

 reluLayer

 fullyConnectedLayer(numOutput,'Name','fc')

 regressionLayer('Name','regressionoutput')];

% validation frequency

validationFrequency = floor(numel(YTrain)/miniBatchSize);

% training options

options = trainingOptions('adam', ...

 'ExecutionEnvironment','auto', ...

 'GradientThreshold',GradientThreshold, ...

 'MaxEpochs',maxEpochs, ...

 'MiniBatchSize',miniBatchSize, ...

 'SequenceLength','longest', ...

 'Shuffle','every-epoch', ...

 'VerboseFrequency',validationFrequency, ...

 'ValidationData',{XValidation,YValidation}, ...

 'ValidationFrequency',validationFrequency, ...

 'Verbose',false, ...

 'Plots','training-progress');

% ---

% train network

% ---

t_start=tic;

[net,info] = trainNetwork(XTrain,YTrain,layers,options);

training_time=toc(t_start);

end

Fig. S6 Scatter plot of cytoplasm conductivity 𝜎𝑐𝑦𝑡 vs cytoplasm permittivity 휀𝑐𝑦𝑡, along with their marginal histograms. Target

(Targ.) features and predicted (Pred.) features are shown in blue and red, respectively. The two separate populations of ghosts
and sphered RBCs are indicated.

Section S4: System normalization results

Fig. S7 (A) Confusion matrix for beads/non-beads classification. The rows correspond to the predicted class (Output Class), and
the columns correspond to the true class (Target Class). Both the number of observations and the percentage of the total number
of observations are shown in each cell. Normalizations by row (i.e., precision) and by column (i.e., recall) are also reported. (B)
Histogram and density plot of target (Targ.) and predicted (Pred.) amplitudes (real and imaginary parts of the peak amplitudes of

the eight frequency channels are collected). Correlation coefficient R and average relative errors µE are also reported within the

density plot.

Section S5: Example of a triplet of red blood cells

Fig. S8 Example of an event involving three red blood cells flowing through the first measurement zone (cf. Fig. 3A, main text).
Flow direction is from left to right. Seven sequential frames (fr.) are shown (78 μs time interval), from top to bottom. Successive
positions of every single cell are marked with a circle and linked with a dotted line. Unused lateral electrodes have been
shadowed. Inset (i) is the measured signal 𝑠1(𝑡). Inset (ii) is the composing single-particle signals (colours after circle markers).
The cell marked in red and the cell marked in green almost simultaneously enter the measurement zone (fr. 3). However, the
former is slower than the latter and leaves the measurement zone well after the cell marked in magenta has entered. Therefore,
the signals produced by single particles interfere with each other, and only two pairs of positive/negative peaks appear in the
recorded signal. Adapted with permission from Ref.4

Section S6: Generation of synthetic clusters (i.e., multi-particle signals)

Fig. S9 Single-particle signals 𝑠1(𝑡) and 𝑠2(𝑡) are extracted from experimental data streams relevant to (A) beads or (B) RBCs at
low concentration (c=105 particle/ml). More than 40000 single particles (equal proportion of beads and RBCs) are collected to
build the training dataset. Each pair of single-particle signals (𝑠1(𝑡) and 𝑠2(𝑡)) is subjected to amplitude data augmentation, with
five values of amplification factor. The logarithm of the amplification factor is randomly uniformly distributed in [0.25,4]. An
example is shown in panel (C), original signals, and panel (D), augmented signals.

Fig. S10 Panel (A) shows the signals 𝑠1(𝑡) and 𝑠2(𝑡) of an exemplary synthetic triplet. Panels (B)-(E) show the stretched and
resampled versions, along with the corresponding stretch values. The resulting particle velocities 𝑣′are obtained by dividing the
original velocity 𝑣 by the stretch, as indicated in panels (B)-(E).

Section S7: Neural networks coincidence resolution from two electrical snapshots

Figures S11 and S12 show details of the neural networks used for coincidence resolution. As for Section S3, the

software was implemented in Matlab; default settings were used for parameters that are not explicitly mentioned,

and a processor Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz (128 GB RAM) with Nvidia Titan X GPU was used.

Fig. S11 Architecture of the classification CNN used for particle counting (i.e., identification of the number of individual composing
particles). The network receives in input an image with two rows (the signals 𝑠1(𝑡) and 𝑠2(𝑡) relevant to the first and second
measuring zones, respectively). The final classification layer predicts the number of involved particles: 1 (singlet), 2 (doublet), 3
(triplet), or more. Training parameters were: 64 epochs, 128 mini-batch size.

Fig. S12 Architecture of the regression RNNs used to characterise individual composing particles (RNN-s, for singlets; RNN-d, for
doublets; RNN-t, for triplets; cf. Fig. 3B, main text). The networks receive in input two sequences (the signals 𝑠1(𝑡) and 𝑠2(𝑡)
relevant to the first and second measuring zones, respectively). The final regression layer predicts the features (central time 𝑡𝑐,
peal-to-peak time 𝛿, pulse width 𝜎, and peak amplitude 𝑎) of each composing event (1 for RNN-s, 2 for RNN-d, and 3 for
RNN-t), in both measuring zones. Training parameters were: 64 epochs for RNN-s, 256 epochs for RNN-d, 512 epochs for RNN-t,
and 128 mini-batch size (all networks).

Section S8: Coincidence resolution – density plots

Fig. S13 Density plots of target (Targ.) and predicted (Pred.) features (i.e., central time, peak-to-peak time, pulse width, and
amplitude) of the single-particle signals. The collection of single-particle features from singlets, doublets, and triplets are plotted
on separate rows (from top to bottom).

References

1 D. Spencer and H. Morgan, ACS Sensors, 2020, 5, 423–430.

2 H. Morgan, T. Sun, D. Holmes, S. Gawad and N. G. Green, J. Phys. D Appl. Phys., 2007, 40, 61–70.

3 C. Honrado, P. Bisegna, N. S. Swami and F. Caselli, Lab Chip, 2021, 21, 22–54.

4 F. Caselli, A. De Ninno, R. Reale, L. Businaro and P. Bisegna, IEEE Trans Biomed Eng, 2020, 68, 340–349.

