SUPPLEMENTARY INFORMATION

Suppl. Table S1. Model parameters

Parameter	Description	Value	Unit	Ref
n _{epi}	Number of	1×10^{6}	cells	Experimentally
	epithelial cells			determined
	in the entire			
	chip			
n _{endo}	Number of	60,000	cells	Experimentally
	endothelial			determined
	cells in the			
	entire chip			
l	Length of the	15.46	mm	
	fluidic channels			
	in the model			
f _{channel}	Fraction of total	0.637		
	channel length			
	represented by			
	the model	7		
A _e	Cross-sectional	1.03×10^{-7}	m^2	Experimentally
	surface area of			determined
	epithelial cells	17		
r _{epi}	Oxygen	3.5×10^{-17}		1
	consumption		cell * s	
	rate per cell	17		
r _{endo}	Maximum	4×10^{-17}		2
	oxygen		cell * s	
	consumption of			
	endothelial			
	Cells			
Q	Apical and	60	$\left \frac{\mu L}{L} \right $	
	basal inlet flow		h	
	rates			
T	Incubator	37	°C	
	temperature	= : 0		
P	Atmospheric	760	mmHg	
	pressure in the			
n	Incubator			
P ₀₂		141	mmHg	
	pressure of			
	oxygen in the			
D	Diffusion	2×10^{-5}		3
^D medium		3 X 10		Ĩ
			S	
D		1×10^{-6}		Provious work
cell		1 × 10		indicates that the
			S	

	oxygen in epithelium			diffusion coefficient is on the order of 10^{-6} to $10^{-5} \frac{cm^2}{s} 4^{-7}$
D _{pdms}	Diffusion coefficient of oxygen in PDMS	5×10^{-5}	$\frac{cm^2}{s}$	3
cO _{2sat}	Oxygen concentration at saturation in culture medium	0.2097	$\frac{mol}{m^3}$	
K _{m,epi}	Concentration of oxygen at half maximum rate of epithelial oxygen consumption	0.001	$\frac{mol}{m^3}$	8
K _{m,endo}	Concentration of oxygen at half maximum rate of endothelial oxygen consumption	.0007	$\frac{mmol}{L}$	2
P _{PVDC}	Oxygen permeability coefficient of PVDC	5.1 × 10 ⁻¹⁸	$\frac{mol * m}{m^2 * s * Pa}$	9
P _{PET}	Oxygen permeability coefficient of oriented PET	7.6×10^{-17}	$\frac{mol * m}{m^2 * s * Pa}$	10
h _{PVDC}	Thickness of PVDC film	0.025	mm	
k ₀₂	Henry's coefficient for oxygen	9.901 × 10 ⁻⁶	$\frac{mol}{m^3 * Pa}$	11
v_b	Volume of the basal channel	3.093	mm^3	

Su	ppl.	Table	S2.	Model	ec	quations
----	------	-------	-----	-------	----	----------

Description	Function	Unit	Ref
Number of epithelial cells	$n_{epi_cells,model} = f_{channel} * n_{epi}$	cells	
represented in the model			
Number of endothelial cells	$n_{endo_cells,model} = f_{channel} * n_{epi}$	cells	
represented in the model			
Volume of the epithelium	$v_a = A_e * l$	m^3	
Density of epithelial cells	$n_{epi_cells,model}$	cells	
	$ \rho_{epi} = \frac{v_a}{v_a} $	m^3	
Density of endothelial cells	n _{endo_cells,model}	cells	
	$\rho_{endo} = \frac{v_b}{v_b}$	m^3	
Maximum oxygen	$V_{max, epi} = r_{epi} * \rho_{epi}$	mol	
consumption rate of the		$\overline{m^3 * s}$	
epithelium			
Maximum oxygen	$V_{max, endo} = r_{endo} * \rho_{endo}$		
consumption rate of the		$m^3 * s$	
endothelium			
Rate of epithelial oxygen	$V_{max,epi} * c_{02}$	mol	
consumption	$N_{epi} - \frac{1}{K_{m,epi} + c_{02}}$	$m^3 * s$	
Rate of endothelial oxygen	$V_{max,endo} * c_{O2}$	mol	
consumption	$N_{endo} = \frac{1}{K_{m,endo} + c_{02}}$	$\overline{m^3 * s}$	
Global mass transfer	P _{PVDC}	s * mol	12
coefficient	$K_{0_2,PVDC} = \frac{1}{h_{PVDC}}$	kg * m	
Flux of oxygen through PVDC	$N_{0_{2}} = K_{0_{2}} PVDC (p_{0_{2}} - k_{0_{2}} * c_{0})$	mol	12
film	[°] 2, <i>PVDC</i> [°] 2, ^{<i>v</i>} VDC [°] 2 [°] 2 [°] 2 [°] 2	$\overline{m^2 * s}$	

Suppl. Fig. S1. Steady-state oxygen concentration of the Intestine Chip coated in PET film. The steady-state oxygen concentration of the uncoated Intestine Chip is shown in **Fig. 1d**.

Suppl. Fig. S2. Steady-state solution of Intestine Chip when cyclic strain is applied. Cyclic strain introduces ambient air into the vacuum channels, which equilibrate with the medium and eliminate the hypoxia gradient. The arrows represent the direction of medium flow.

Suppl. Fig. S3. Culturing primary human intestinal epithelium in oxygen-sensing Intestine Chips does not affect epithelial morphology or structural integrity. Epithelium on an oxygen-sensing chip (left) and on a standard chip without oxygen sensors (right). The intestinal epithelium secretes a layer of mucus, which causes the images to appear opaque when viewed from above by light microscopy; however, similar rounded intestinal villus structures are still visible particularly in the lighter regions in both experimental conditions. Scale bar: 200 µm.

Suppl. Fig. S4. The endothelium has minimal impact on oxygen distribution and concentration. A) Steady-state oxygen distribution in Intestine Chips with (top) and without (bottom) endothelium. B) Plotting the theoretical oxygen concentration at four locations on the Intestine Chip with (black) and without (grey) endothelium.

Suppl. Fig. S5. Effect of removing the chips from flow and bringing to room temperature. A) Experimentally measuring oxygen after chips are removed from flow and brought to room temperature. B) COMSOL simulations of removing the chips from flow and bringing them to room temperature. There is a gradient of oxygen concentration in the apical channel. Lower oxygen levels are closer to the epithelium. C) Theoretical measurements from inside the apical channel show that the chip is able to maintain stable oxygen levels 60 min after removal from flow.

Suppl. Fig. S6. Procedure for coating the chip with PVDC film. i) cut a square of PVDC film, ii) tightly wrap the Intestine Chip with two layers of film, iii) trim excess film from the edges, iv) puncture 8 equidistant holes along the bottom of the basal channel with a 1 mm biopsy punch, v) introduce holes into the inlets and outlets, iv) insert the chip into the Pod.

Suppl. Fig. S7. Design of the fabricated oxygen-sensing chip. The apical and basal blocks have multiple embedded oxygen sensors that face the main fluidic channels of the chip.

References

- 1 M. Grauso, A. Lan, M. Andriamihaja, F. Bouillaud and F. Blachier, *Sci Rep*, DOI:10.1038/s41598-019-47851-9.
- 2 M.-C. Kim, R. H. W. Lam, T. Thorsen and H. H. Asada, *Microfluid Nanofluid*, 2013, **15**, 285–296.
- 3 W. Shin, A. Wu, M. W. Massidda, C. Foster, N. Thomas, D.-W. Lee, H. Koh, Y. Ju, J. Kim and H. J. Kim, *Front. Bioeng. Biotechnol.*, DOI:10.3389/fbioe.2019.00013.
- 4 T. A. Saldena, F. D. Saravi, H. Hwang, L. M. Cincunegui, and G. E. Carra, *Dig Dis Sci*, 2000, **45**, 2108–2114.
- 5 C. Androjna, J. E. Gatica, J. M. Belovich and K. A. Derwin, *Tissue Eng Part A*, 2008, **14**, 559–569.
- 6 L. Shi and V. Ronfard, Int J Burns Trauma, 2013, **3**, 173–179.
- 7 J. E. Valentin, D. O. Freytes, J. M. Grasman, C. Pesyna, J. Freund, T. W. Gilbert and S. F. Badylak, *Journal of Biomedical Materials Research Part A*, 2009, **91A**, 1010–1017.
- 8 P. Buchwald, Theor Biol Med Model, 2009, 6, 5.
- 9 J. Wang, D. J. Gardner, N. M. Stark, D. W. Bousfield, M. Tajvidi and Z. Cai, ACS Sustainable Chem. Eng., 2018, 6, 49–70.
- 10L. K. Massey, *Permeability Properties of Plastics and Elastomers, 2nd Ed: A Guide to Packaging and Barrier Materials*, Elsevier Science & Technology Books, Norwich, UNITED STATES, 2003.
- 11G. Mattei, S. Giusti and A. Ahluwalia, *Processes*, 2014, 2, 548–569.
- 12S. Giulitti, E. Magrofuoco, L. Prevedello and N. Elvassore, Lab Chip, 2013, 13, 4430–4441.