1 Development and Translation of a Paper-based Top Readout

2 Vertical Flow Assay for SARS-CoV-2 Surveillance

- 3
- 4 Huan Jia^{1,*,#}, Eric Miller², Chan Chia Ching¹, Say Yong Ng¹, Mookkan Prabakaran³,
- 5 Meng Tao³, Ian Shen-Yi Cheong³, Sing Mei Lim¹, Ming Wei Chen⁴, Xiaohong Gao⁴,
- 6 Abirami R¹, Megan E. McBee¹, Peter R. Preiser^{1,4}, Hadley D. Sikes^{1,2}, Patthara
- 7 Kongsuphol^{1,*,#,‡}.
- 8

9 ¹Antimicrobial Resistance Interdisciplinary Research Group (AMR-IRG), Singapore-MIT

10 Alliance in Research and Technology (SMART), 1 CREATE way, Singapore 138602

¹¹ ² Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 25 Ames

12 Street, Building 66 Cambridge, MA 02139, USA.

¹³ ³ Molecular Pathogenesis Group, Temasek Life Science Laboratory, National University of

14 Singapore, 1 Research Link, Singapore 117604.

⁴ School of Biological Science (SBS), Nanyang Technological University (NTU), 60 Nanyang
Dr, Singapore 637551.

- ¹⁸ * H.J. and P.K. contributed equally to this work.
- 19 [‡]P.K. current affiliation is Thrixen Pte. Ltd., Singapore.
- 20 [#] Corresponding author emails: <u>huan.jia@smart.mit.edu; pattharak@gmail.com</u>

¹⁷

21 Supplementary Information

S/N	Biological Agent	Source	Lot #	Test Concentration	Remarks/expire date
1	Human adenovirus 3	ATCC VR-3	70033218	4 x 10 ⁶ TCID ₅₀ /mL	
2	Human adenovirus 5	ATCC VR-5	70024114	$4 \ge 10^7 \text{ TCID}_{50}/\text{mL}$	
3	Coronavirus-229E	ATCC VR-740	70035459	$4 \ge 10^4 \operatorname{TCID}_{50}/\mathrm{mL}$	
4	Coronavirus-OC43	ATCC VR-1558	70036255	4 x 10 ⁴ TCID ₅₀ /mL	
5	Human adenovirus 4	ATCC VR-1572	58527797	1.25 x 10 ^{5.5} TCID ₅₀ /mL	
6	Coronavirus NL63	ZEC. 0810228CFHI	325222	$1.17 \ge 10^3 \text{ TCID}_{50}/\text{mL}$	HI (15-10-2023)
7	RSV Type A	ZEC. 0810040ACFHI	324924	$1.25 \times 10^4 \text{ TCID}_{50}/\text{mL}$	HI (25-08-2023
8	RSV Type B	ZEC. 0810040CFHI	323000	$1.25 \ge 10^4 \text{ TCID}_{50}/\text{mL}$	HI (04-09-2022
9	Rhinovirus A16	ZEC. 0810285CFHI	316699	$2.5 \times 10^{4.1} \text{ TCID}_{50}/\text{mL}$	HI (N/A)
10	Influenza A	AMR in house culture		1.13 x 10 ⁹ PFU/mL	
11	Influenza B	AMR in house culture		$1 \ge 10^5$ PFU/mL	
12	Klebsiella pneumoniae	AMR in house culture		$3 \times 10^7 $ CFU/mL	
13	Streptococcus pneumoniae	AMR in house culture		4 x 10 ⁶ CFU/mL	

22 Table S1. List of non-specific pathogens used for the cross-reactivity study

Figure S1. SDS-PAGE gel images of purified proteins.

27 SDS-PAGE gel images for NP-CBD (SARS-CoV-2 N Protein fused with CBD), NP (SARS-CoV-

28 2 N Protein), BA-MBP-Sso.E1 (Sso.E1 tagged with BA-MBP), Sso.E2-CBD (Sso.E2 fused with

- 29 CBD), N-NTD (SARS-CoV-2 N Protein N terminal domain) and N-CTD (SARS-CoV-2 N Protein
- 30 C terminal domain).
- 31

34

Figure S2. Analysis of colorimetric signals obtained from control spots.

35 (A). Cyan intensity at control spot with different concentrations (0, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 36 10, 25, 50 nM) of SARS-CoV-2 N Protein spiked in saliva test matrix; (B). Cyan intensity at 37 control spot with different concentrations (0, 7.8, 16, 31, 63, 130, 250, 500, 1,000 x 103 38 TCID₅₀/mL) of SARS-CoV-2 virus spiked in saliva test matrix; (C). Cyan intensity at control spot 39 with 13 different pathogen samples spiked in saliva test matrix.

42

Figure S3. Images of test strip construction.

(A). Schematic representation of cassette assembly; (B). Cassette assembled with plastic manifold
and paper clips; (C). Cassette assembled with plastic manifold and double-sided tape; (D).
Aluminum cassette assembled with screw; (E). Injection molding produced bottom (left) and top
(right) pieces of the test cassette and (F). Injection molded plastic cassette after assembly.

Figure S4. Assessment of washing step.

49 (A). Test spot images of VFAs carried out with and without washing step and with or without 5 50 nM SARS-CoV-2 N Protein respectively: (B). Cyan intensity analysis for VFAs carried out with 51 and without washing step; (C). Signal to noise ratio (S/N) analysis for VFAs carried out with and 52 without washing step, the difference is significant.

Figure S5. Assessment of different colorimetric developmental times.

(A). Test spot images of VFAs carried out with or without 5 nM SARS-CoV-2 N Protein that are
developed for 1 or 2 or 3 minutes; (B). Cyan intensity analysis for VFAs carried out with or without

58 SARS-CoV-2 N Protein for different development times; (C). Signal to noise ratio (S/N) analysis

59 of VFAs that have been developed for signal for 1 or 2 or 3 minutes.

61 Figure S6. Analysis of colorimetric signals obtained from control spots of the PoC tests.

62 (A). Cyan intensity at control spot with different concentrations (0, 1, 2, 3, 4, 5 nM) of SARS-63 CoV-2 N Protein spiked in saliva test matrix; (B). Absorbance (650 nm) at control spot using 64 Attonics spectrophotometer absorbance reader system with different concentrations (0, 0.032, 65 0.16, 0.8, 4, 20, 1,000 x 10^3 TCID₅₀/mL) of SARS-CoV-2 virus spiked into saliva test matrix.

- 66
- 67