Supporting information

High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics

Zhixian Zhu¹⁺, Shuang Li²⁺, Dan Wu³, Hui Ren¹, Chen Ni¹, Cailian Wang^{2*}, Nan Xiang^{1*}, and Zhonghua Ni^{1*}

¹School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.

²Department of Oncology, Zhongda Hospital, Southeast University, Nanjing, 210009, China.

³Department of Oncology, Jiangyin People's Hospital, Jiangyin, 214400, China.

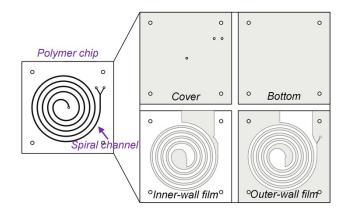
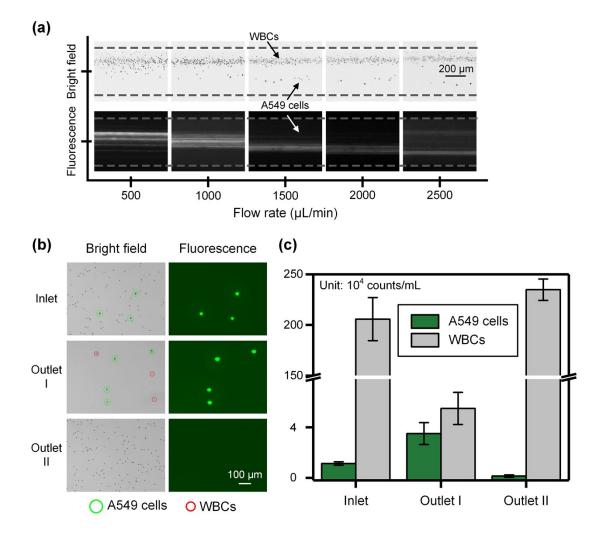



Figure S1. Detail patterns of the polymer microfluidic chip and each polymer film.

Figure S2. (a) Focusing maps illustrating the dynamic distributions of A549 cells and WBCs at the flow rates ranging from 500 to 2500 μ L/min. (b) Microscopic images of cells recovered from two outlets. A549 cells were discolored with green fluorescence in order to distinguish from the unlabeled WBCs. (c) Quantitative analysis of the cell concentrations sampled from inlet and two outlets.

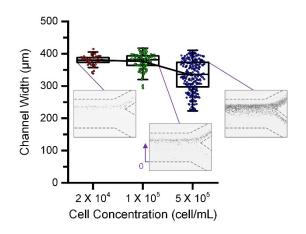


Figure S3. The distributions of white blood cells across the channel width under different cell concentrations ranging from 2×10^4 to 5×10^5 cells/mL.

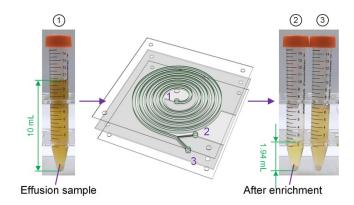


Figure S4. Photograph illustrating the actual sample volume of effusion after enrichment.

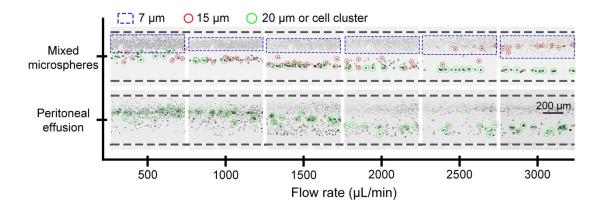
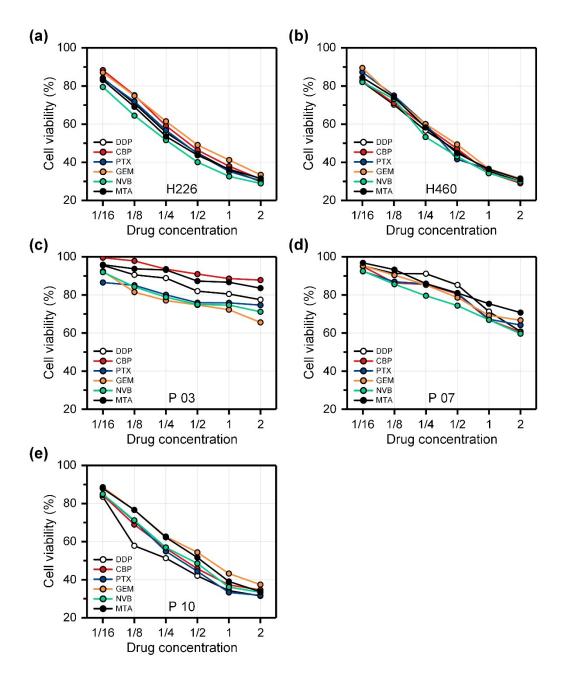



Figure S5. Focusing maps illustrating the dynamic distributions of mixed particles (7 μ m, 15 μ m, and 20 μ m) and cell clusters at the flow rates ranging from 500 to 3000 μ L/min.

Figure S6. (a-e) Drug sensitivity test at the drug concentrations ranging from 1/16 to 2 times of the peak plasma concentration.

No.	Age/ Sex	Disease	Stage	Treatment	Sample
1	75/M	Lung cancer	III	NA	Pleural effusion
2	40/F	Lung cancer	IV	NA	Pleural effusion
3	56/M	Lung cancer	IV	PTX	Pleural effusion
4	71/M	Lung cancer	IV	NA	Pleural effusion
5	54/M	Lung cancer	IV	DDP	Pleural effusion
6	NA/F	Lung cancer	IV	Bevacizumab	Pleural effusion
7	61/F	Lung cancer	IV	DDP	Pleural effusion
8	78/F	Lung cancer	IV	Osimertinib	Pleural effusion
9	62/M	Lung cancer	NA	NA	Pleural effusion
10	66/F	Lung cancer	III	NA	Pleural effusion
11	53/F	Breast cancer	III	Trastuzumab	Pleural effusion
12	76/F	Breast cancer	IV	Surgery	Pleural effusion
13	54/M	Colorectal cancer	NA	PTX	Peritoneal effusion
14	57/M	Colorectal cancer	IV	NA	Peritoneal effusion
15	65/M	Colorectal cancer	IV	NA	Peritoneal effusion
16	70/F	Colorectal cancer	NA	NA	Peritoneal effusion
17	68/M	Colorectal cancer	IV	Surgery	Peritoneal effusion
18	67/M	Colorectal cancer	III	NA	Peritoneal effusion
19	56/F	Colorectal cancer	NA	NA	Peritoneal effusion
20	NA/F	Ovarian cancer	NA	NA	Peritoneal effusion
21	60/F	Ovarian cancer	IV	PTX	Peritoneal effusion
22	74/F	Ovarian cancer	IV	PTX	Peritoneal effusion

Table S1. Clinical and pathological data of patients.

Method	Throughput	Yield	Purity	Clinical Application	Fabrication
	1.7 mL/min	>80%	400–680	Blood of breast and lung	Micro-milling technique
Slanted spiral microfluidics ¹			WBCs/mL	cancer patients	and PDMS casting
Dean-flow fractionation	0.75 mL/min	NA	~750	Blood of breast and lung	Standard photolithographic
microfluidics ³			WBCs/mL	cancer patients	technique
Dean-flow fractionation	1.25 mL/min	~85%	~50%	MCF-7 cells from human	UV laser cutting
microfluidics ¹¹				blood	
Slanted spiral	1.7 mL/min	NA	NA	Particle focusing	3D printing
microfluidics ¹²					
Slanted spiral microfluidics ²	1.7 mL/min	>85%	NA	urine of patients with prostate	Micro-milling technique
Stanted spiral interoflutdies	1./ IIIL/IIIII			cancer	and PDMS casting
Spiral microfluidics with	0.75 mL/min	88.6-	25.6-	MCF-7, Hela, and A549 cells	Standard photolithographic
periodic expansion		93.5%	35.2%		technique
structures ⁵					lecinique
Dean-flow fractionation	NA	90%	NA	Pleural effusion in patients	Micro-milling technique
microfluidics ⁴				with lung cancer	and PDMS casting
	2 mL/min	~85%	>37%	Pleural effusion in patients	UV laser cutting and jigsaw puzzle method
Slanted spiral microfluidics	(single cell)			with breast and lung cancer,	
(current work)	3 mL/min (cell cluster)			peritoneal effusion in patients	
				with colorectal and ovarian	
				cancer	

Table S2. Summary of inertial microfluidics for tumor cell sorting.