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Supplementary Information 1: Geometrical details of the microfluidic structure
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Figure S1. Schematics of a microfluidic channel incorporating a circular stenosis utilised for

the generation of dynamic vortices.



Supplementary Information 2: Characterisation of the audio speaker
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Figure S2. Characterisation of the audio speaker: (a) Schematics of the system. (b) Variations
of tube oscillation amplitude against tube oscillation frequency at various voltages applied to

the speaker.



Supplementary Information 3: Characterisation of tube oscillation at different points of the

inlet tube
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Figure S3. Analysing the axial oscillation of the inlet tube obtained by a 1 s exposure using
a Canon 6D camera coupled with an EF 100 mm /2.8 macro lens: (a) Amplitude of axial
oscillation at different points of the inlet tube. Blue strips were drawn using a marker at 2 cm
intervals to track the tube oscillation. (b) Close-up images at the points positioned 2 cm and
18 cm away from the speaker arm. (c) Variations of the tube axial oscillation amplitude
against the tangential distance from the speaker arm. Error bars correspond to average +

standard deviation obtained in three sets of independent experiments.



Supplementary Information 4: Assessing the biocompatibility of tube oscillation
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Figure S4. Analysis of the haemolysis of blood samples following tube oscillation at various

oscillation frequencies and voltages.



Supplementary Information 5: Calculation of the equivalent velocity of oscillating flow

The dynamic velocity of the fluid within the oscillating tube (Ugynamic) can be obtained by
providing a balance between the dynamic pressure induced by tube oscillation and the viscous

pressure drop along the tube and the microfluidic channel:

APoscillation = APviscous—tube + APviscous—channel (1)

These three pressure terms can be defined as below:
APoscillation = 0.5 pfluid (Atube wtube)z( Loscillating/ Ltube) Sin(wtube t) (2)
APm’scous—tube = 128 .ufluid Qdynamic Ltube/T[D?ube (3)

APviscous—channel = Acp :ufluid Qdynamic Lch/WchHg)h (4)

in which, pryiq and pep,iq are the density and viscosity of the fluid, A,y and w,,. are the
amplitude and frequency of tube oscillation, respectively, Qgynamic is the dynamic flow rate
induced by tube oscillation, L;,,. and D;,;. are the length and internal diameter of the
oscillating tube, respectively, L,sciyqating is the length of the tube, which is oscillating almost
at the same amplitude of the audio speaker diaphragm, L., W, and H_;, are the length, width,
and height of the microfluidic channel, respectively, a.;, is the aspect ratio coefficient of the
channel, which is defined as a., = 12/[1 — (192 H,,/m>W,;,) tanh (T W, /2 H,,)].

Rearranging of the above equations, the dynamic velocity of the oscillating tube is obtained,

as below:

0.5 Priuid (Atube wtube)z Loscillating/ Ltube Sin(wtube t) (5)

Qdynamic(t) = 2 3
128 Ufiuid Ltube/ﬂDtube + Ach Uriuia Lch/Wcthh

Accordingly, the dynamic velocity of the fluid within the oscillating tube is obtained, as below:

4 Qdynamic (t) (6)

Udynamic(t) = 2
nD tube



Supplementary Information 6: Vortex generation downstream the stenosis under static flow
conditions
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Figure S5. Vortex formation downstream of a stenosis at static flow rates without tube
oscillation: (a) The formation of a forward vortex in diluted blood at flow rates higher than
350 pL/min captured by high-speed imaging. (b) Variations of vortex length against static
flow rate. Error bars correspond to average * standard deviation obtained from three sets of
independent experiments.



Supplementary Information 7: Evolution of dynamic vortices obtained by numerical

simulations
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Figure S6. Numerical simulations showing the evolution of dynamic vortices: (a) Dynamic
flow rates induced by tube oscillation in the microfluidic channel. (b) The evolution of
backward and forward vortices over a single tube oscillation cycle obtained by numerical

simulations.



Supplementary Information 8: Variations of vortex extent and area over one cycle
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Figure S7-i. The evolution of backward and forward vortices over time: (a) VVortex formation
in diluted blood at 2.5 V and 20 Hz over one cycle obtained by high-speed imaging. (b)
Schematics showing the extent of backward and forward vortices.
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Figure S7-ii. The vortex evolution over time: (a) Schematics showing the extent of backward
and forward vortices at 2.5 V and 20 Hz over one cycle. (b) Variations of vortex extent (length
and width) over time. (d) Variations of vortex area over time obtained by ImageJ. Error bars
corresponds to average + standard deviation obtained in three sets of independent

experiments.
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Supplementary Information 9: Discontinuous generation of dynamic vortices
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Figure S8. Discontinuous generation of dynamic vortices: (a) A discontinuous 20 Hz, 2.5 V
signal with 0.5 sec pulses and 0.5 sec gaps to activate the audio speaker. (b) No-vortex mode.
(c-g) Dynamic vortex generation caused by tube oscillation. (h) Return to no-vortex mode.
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Supplementary Information 10: Dynamic vortex generation at various frequencies obtained

by numerical simulations
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Figure S9. Numerical simulations to investigate dynamic vortex generation at oscillation
frequencies ranging from 15 to 40 Hz at 2.5 V: (a-b) The extent of backward and forward

vortices obtained by numerical simulations which closely match experimental results.
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Supplementary Information 11: Generation of a secondary vortex at higher frequencies
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Figure S10. Generation of a secondary vortex at high frequencies: (a) Schematics showing
the location of primary and secondary backward and forward vortices. (b) Simulation and
experimental results showing the formation of primary and secondary forward vortices. (c)
Simulation and experimental results showing the formation of primary and secondary
backward vortices. Results are obtained by setting the frequency of tube oscillation to 35 Hz

and the voltage of the speaker to 2.5 V.

13



Supplementary Information 12: Variations of vortex width at different tube oscillation

frequencies
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Figure S11. Variations of vortex width (progression along the width of the channel) at
different oscillation frequencies: (a) Variations of vortex width against frequency. (b)
Variations of vortex width against the Reynolds number of oscillating flow. Error bars
corresponds to average + standard deviation obtained in three sets of independent

experiments.
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Supplementary Information 13: Variations of vortex width at different voltages
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Figure S12. Variations of vortex width (progression along the width of the channel) at
different voltages applied to the audio speaker: (a) Variations of vortex width against voltage.
(b) Variations of vortex width against the Reynolds number of oscillating flow. Error bars
corresponds to average + standard deviation obtained in three sets of independent

experiments.
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Supplementary Information 14: Dynamic vortex generation at 30 Hz at various voltages
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Figure S13. The effect of input voltage on the generation of dynamic vortices across a
microfluidic stenosis: (a-b) The extent of backward and forward vortices at 30 Hz and at
voltages ranging from 1.5 V to 4.5 V. (c) Variations of vortex length over one oscillation
cycle at different voltages at 30 Hz. (d) Variations of vortex length against the Reynolds

number of oscillating flow at different voltages at 30 Hz.
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Supplementary Information 15: Dynamic vortex generation at higher flow rates obtained

by numerical simulations

[1250 pL/min|Forward + Forward regime|

| A S 7‘.“7 4

R
Streamlines coloured by velocity (m/s) Streamlines coloured by velocity (m/s)
043 103 101 160
[ mem—— [ eee— |

{375ms][250ms][125ms|[ Oms | {37.5ms|[250ms]|[125ms][ Oms |

Figure S14. Analysing the dynamics of vortices at high flow rates using numerical simulations:
(a) A flow rate of 700 pL/min inducing the forward vortex regime. (b) 1250 pL/min inducing

forward-forward vortex regime.
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Supplementary Information 16: Analysis of flow-induced shear rate induced at the stenosis
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Figure S15. Variations of shear rate throughout a tube oscillation cycle obtained by numerical
simulations. (a) Variations of maximum shear rate at the apex of stenosis within one cycle of
tube oscillation. (b) Shear rate contours at the cross-section of the stenosed microfluidic

channel obtained. Results are obtained by setting the tube oscillation frequency to 30 Hz and
the speaker voltage to 3.5 V.
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