
A Appendix

A.1 Gaussian beam parameters
The plano-concave optical microcavity is characterised by the cavity length L
and the radius of curvature of the concave mirror RL. The Rayleigh range zR
of the confined mode is then
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L
−1
)
. (A.1)

The radius of curvature of the wavefronts R(z) and the beam radius w(z) are
then given by
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, (A.2)
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The intensity distribution for the resonant cavity mode supported be-
tween opposing concave and planar mirrors given in equation (5) is deter-
mined as the sum of two Gaussian beams propagating in opposite directions,
I = nmε0c|Ei +Er|2, where the incident (Ei(ρ,z)) and reflected (Er(ρ,z))
waves are given by 27:
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For the measurements reported here we used RL = 12 µm and L = 960 nm.

A.2 Balancing optical and flow forces
The maximum optical force is obtained by establishing the maximum value
of dI

dx using the mode intensity in equation (5). This maximum force opposing

Fig. A.1 Total potential energy along the axis (x,0,0) for a PS
particle diameter of 200 nm with no flow (blue curve) and with a
flow speed of 100 µm s−1 (red curve).

(a)

(b)

Fig. A.2 The mode shift of a PS particle with diameter of 200 nm
with a fluid flow speed of 50 µm s−1 and intracavity powers of (a) 2
mW and (b) 20 mW.

the drag force due to the fluid flow occurs at x = w
2 ,y = 0,z = 0 at which

point dI
dx = 2P

πw3√e . Substitution of this expression into the optical force term
in equation (1) and equating with the viscous drag force due to fluid flow
yields equation (7). This condition corresponds approximately to the potential
energy profile shown in red in figure A.1, where the potential gradient tends
to zero at the downstream side of the cavity mode.

A.3 Monte Carlo simulation

Based on Equations (1) and (5), and the selection of the x axis as the flow, the
equations for incremental movements of a particle in the Cartesian coordinate
system are:
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Here wi is a computer generated, normally distributed random number with
unity variance. The time increment ∆t is selected as 1 µs which is short
enough to prevent ‘tunneling’ of the particle through the potential barriers.
The Monte Carlo model allows simulation of the mode shift with time as the
particle moves through the mode I (r). Figure A.2a shows example mode
shift events of a spherical PS nanoparticle diffusing through the cavity. The
diameter and the velocity of the nanoparticle are 200 nm, and 50 µm s−1,
respectively. At an intracavity power of 2 mW the particle passes through
the cavity mode in about 20 ms while at an intracavity power of 20 mW the
particle remains in the mode for about 750 ms (figure A.2b).
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