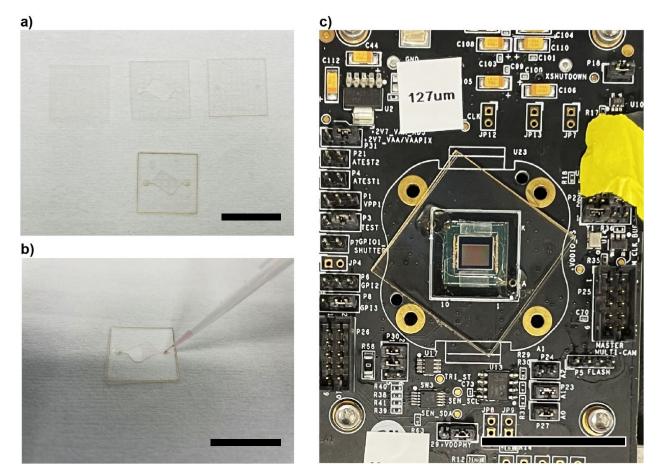
Supporting Information

Point-of-care SARS-CoV-2 sensing using lens-free imaging and a deep learningassisted quantitative agglutination assay

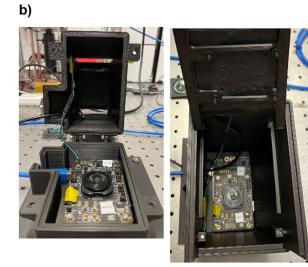
Colin J. Potter,^{ab} Yanmei Hu,^{c‡}, Zhen Xiong,^a Jun Wang,^{c‡} and Euan McLeod^{a*}

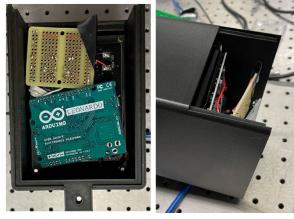

^a Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA

^b College of Medicine, University of Arizona, Tucson, Arizona 85724, USA

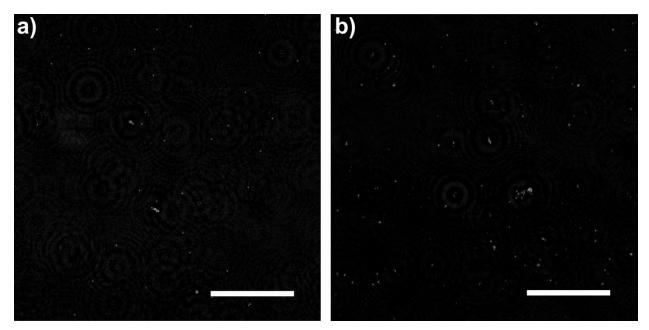
^c Department of Pharmacology, University of Arizona, Tucson, Arizona 85724, USA

[‡]Present address: Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, New Jersey 08854


*euanmc@optics.arizona.edu


Figure S1: a) Imaging chamber components, from left to right on top: glass coverslip, 125 μ m thick polycarbonate (PC) chamber spacer, 250 μ m thick PC cover. **b)** Imaging chamber filling with 1:1 DMEM + pseudovirus and PBS + latex bead suspension. **c)** Imaging chip placed on top of image sensor inside the portable LFHM. Scale bars = 25 mm.

a)



c)

Figure S2: a) External view of portable LFHM housing. Top portion is hinged to facilitate loading of imaging chamber into the biosensor. **b)** Placement of image sensor within the base of the housing. **c)** Custom LED array and Arduino Leonardo microcontroller in top compartment of the housing. The underlying optical table has holes on a one-inch grid.

Figure S3): a) Representative image of sample of filtered SARS-CoV-2 pseudovirus with 0.0025% latex beads. Despite filtering, there is still debris present. **b)** Representative image of sample of unfiltered SARS-CoV-2 pseudovirus with 0.005% latex beads. Without filtering, there is more debris and particle irregularity. Scale bars = 150 μ m.