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A. Supplementary Results
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Figure S1: Proliferation studies on PDAC cell lines: A - T449, B — T366, and C — T608. Cell
cultures were exposed to varying concentrations of gemcitabine (0.01, 0.1, and 1 pg mL™) for: 24
h (circle), 48 h (square) and 96 h (triangle). Proliferation (%) is calculated as the relative

proliferation under each treated condition compared with untreated for each exposure period and
gemcitabine concentration.
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Figure S2: Hypotonic treatment studies on PDAC T449 cell line. Histograms A — Annexin V
(AV) and B — Zombie Near-Infrared (ZNIR) show that exposing cell cultures to DI water for
increasing periods of time induces cells towards apoptosis and necrosis pathways.
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Figure S3: Manual gating versus clustering with unsupervised learning. A — Manual gates for each
viability subpopulation applied to the density scatter plot of impedance phase at 0.5 MHz
(¢pZosmHz) versus impedance phase at 30 MHz (¢pZsomHz) for merged data from the different
hypotonic treatment samples. Histograms for B — ¢pZo.smHz and C — ¢pZsomnz Of the manually gated
subpopulations. D — A Gaussian Mixture Model (GMM), with k = 4 clusters, applied to cluster
each viability subpopulation in the density scatter plot of impedance phase at 0.5 MHz (¢Zo.5mHz)
versus impedance phase at 30 MHz (¢pZsomHz) for merged data from the different hypotonic
treatment samples. Histograms for E — ¢pZosmrz and F — ¢pZsomnz of the machine learning gated
subpopulations.

>

n
@

[N)
=

N
(=]

-
)

Viable

Electrical Diameter (p:m)
>

8 71 Earty Apop
Late Apap
Necratic
4 0
T449 T366 T608 T449 T366 T608 T449 T3686 T608
D , E ., F o —
Sk Ak Hok Ak Rk Ek dokokok dikr e A YT
08 LLIL] [ETT] s 0.8 EEEE LlLLl S N 1 LI RLIIY ke
XTI fre Py e ek Eabs Z pres e * g
e xR @
Z086 el 2 rex 206 i o] *hkk 509
s A% ErrTs = Akk - o
@ 1 3 = <
'::i 04 I rex o |J\€|‘ 0.4 LTS wxx LI %0.8
g
0.2 02 0.7
0 0.6
T449 T366 T608 T449 T366 T608 T449 T366 T608

Figure S4: Comparison of the impedance cytometry biometrics of electrical diameter (A),
impedance phase at 0.5 MHz (¢Zo:smHz, B), at 2 MHz (¢pZ2mnz, C), at 18 MHz (¢pZismHz, D) and
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at 30 MHz (¢pZsomHz, E), and magnitude opacity (|Z|2mHz / |Z|osmHz, F) for each untreated PDAC
cell line (n = 3). Statistical significance: *p < 0.05 ; **p < 0.01, ***p < 0.001 and ****p <
0.00001.
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Figure S5: Comparison of the impedance cytometry biometrics of electrical diameter (A),
impedance phase at 0.5 MHz (¢pZo.smHz, B), at 2 MHz (¢pZ2mmz, C), at 18 MHz (¢pZismHz, D) and
at 30 MHz (¢pZsomHz, E), and magnitude opacity (|Z|2mHz / |Z]o.smHz, F) for each gemcitabine-treated
PDAC cell line (n = 3). Statistical significance: *p < 0.05 ; **p < 0.01, ***p < 0.001 and ****p
< 0.00001.

B. Supplementary Methods
Dielectric Shell Modelling

For the case where a particle is suspended in a dielectric medium, dielectric spectroscopy can be
used to measure the dielectric properties of the suspension®. This mixture of particle and medium
can be approximated to that of a single dispersion using Maxwell’s mixture theory (MMT)2. MMT
can be used to combine the dielectric properties of all parts into an overall complex permittivity of
the mixture (&,,i,):

Emix = gmedium(l +3¢ fCM,mix) (Sl)

where &,,.q4ium 1S the complex permittivity of the suspending medium, ¢ the volume fraction of
the particle in the medium, and fCM,mix the Clausius—Mossotti factor of the cell in the mixture. In
practical terms, &,,;, describes the change in the medium permittivity, due to the presence of a
particle of a given volume and can only be used if the volume fraction is small, i.e., ¢ «< 1. For
the case of a cell in suspending medium, MMT-based, shell models can be used to retrieve the
dielectric properties of the cell*>. While cells have an intricate internal structure surrounded by a
membrane, a simplified approximation can be used based on shell models, wherein a cell is
described as a series of n concentric shells with defined dielectric properties (Figure S6A). In a
standard single-model, there are two dispersions, corresponding to the existing interfaces, i.e.
medium-membrane and membrane-interior.



For a shell model, the Clausius—Mossotti factor of the cell in the mixture is given by:

fCM,mix — Eparticle — Emedium (82)

Eparticle + 2&8medium

The complex permittivity of the cell, &,41;c1e, IS an aggregation of the complex permittivities of
all the n shells modelled for the particle, and represents the final dispersion, typically
corresponding to medium and cell membrane. The complex permittivity of any dispersion can be
calculated as:

~ o~ Yn-1n® + 2(5::;;221) 33
gn,n‘l'l - gn 3 §n+1—§n ( )
Yn-1n _(§n+1+2§n)
with,
Th—
Yn-1n = S (S4)

™

where r is the radius of the shell being modeled. The complex permittivities of each specific shell
can in turn be calculated using:

&, = ¢&,6n — i(;—" (S5)

where &, and a,, can be ranges of permittivities and conductivities, respectively, being tested with
the model for each n shell; while &, is the constant vacuum permittivity (8.85x 1072 Fm™) and w
is the angular frequency along the frequency spectrum measured. By calculating of each shell, and
using Equation S1, it is then possible to calculate the dielectric decrement due to the presence of
the particle in the suspending medium between the measurement electrodes. Thus, the impedance
of the mixture (Z,,,;,) can be obtained:

5 _1
Zmix = 1081 Gy (S6)

where i* = —1, w is the angular frequency, and G is the geometric constant of the system. For an
ideal parallel plate electrode system, G is simplified t0 A jectroae/ detectrode: WNere Agjectroge 1S
the electrode surface area and d,;..:0qe IS the separation distance between electrodes.

Given the frequency-dependence of Z,,;,, relaxation curves for the impedance magnitude and
phase can be calculated using:

|Zmix| = \/Re(Zmix)Z + hn(Zmi;»c)2 (87)
¢Z iy = arctan (g‘;g—:zi) (S8)

An iterative algorithm can be implemented to calculate these curves for a wide spectrum of
combinations between different electrophysiology metrics (e.g. varying particle size, membrane
conductivity or internal conductivity; Figure S6B-F).
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Figure S6: Dielectric shell modelling. A — An equivalent single-shell model of a biological cell
in a suspending medium, obtained through Maxwell’s mixture theory. Modelled electrical
diameter and impedance phase (¢Z) for a variety of different alterations to the dielectric
properties: B — cell size (r ey from 6 to 10 um, C — membrane permittivity (€., from 8 to 20),
D — membrane conductivity (0 ,,e, from 6 x 108 to 6 x 10%), E — internal conductivity (o ,,, from
0.3t0 1.0 S m, assuming &,,em = 14 and G0 < 1 X 10° S m?) , and F — internal conductivity
(0 from 0.3t0 1.5 S mL, assuming &,,6m = 14 and 6,0, = 6 x 102 S m™). Cells modelled using
a single-shell model with the following set of dielectric properties (if not being varied at each



individual sub-figure case): d e = 10 NM, £,0m = 14, Opem < 1 X 100 Sm?, £,,, = 60, 6, =
05S m-l’ Emedium ~ 801 O medium — 16S m-l’ delectrode =30 pm, Aelectrode =25x 10-9 mz-
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