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Section S1. Theory for drop shape oscillation 

Small amplitude axisymmetric deformations and shape oscillations of the viscoelastic liquid 

drop in microgravity were analyzed using the linear momentum and continuity equations as 

well as the Kelvin-Voigt constitutive equation1 for drop viscoelasticity: 

 𝜏𝜏 = 2(𝐺𝐺𝐺𝐺 + 𝜇𝜇𝛾̇𝛾),   𝛾̇𝛾 = (𝛁𝛁𝛁𝛁+ 𝛁𝛁𝐯𝐯T)/2,  𝛾𝛾 = (𝛁𝛁𝛁𝛁+ 𝛁𝛁𝐮𝐮T)/2, (S1) 

where τ is the deviatoric stress tensor, γ the strain tensor, 𝛾̇𝛾 the rate-of-strain tensor, v the 

velocity vector, u the displacement vector, 𝛁𝛁 the gradient operator, G the elastic modulus, and 

µ the shear viscosity. Assuming a negligible stress tensor in the medium outside the drop surface, 

the following kinematic and dynamic boundary conditions were applied at the drop surface, 

respectively: 

 𝐯𝐯s = 𝐯𝐯|s,        (𝑝𝑝𝐧𝐧 − 𝐧𝐧 ⋅ 𝜏𝜏)s = 𝜎𝜎(𝛁𝛁s⋅ 𝐧𝐧)𝐧𝐧,      𝛁𝛁s ≡ 𝛁𝛁 − 𝐧𝐧𝐧𝐧 ⋅ 𝛁𝛁. (S2) 

Here n is the outward unit normal vector, vs the velocity vector at the surface, 𝛁𝛁s the surface 

gradient operator, p the pressure, and σ the surface tension. 

The analysis of drop oscillation follows our previous work2 in which drop viscoelasticity 

was described by Jeffreys constitutive equation.3 In this analysis, the surface profile of the drop 

rs is expressed in polar coordinates (r, θ) as 

 𝑟𝑟s = 𝑅𝑅[1 + 𝜀𝜀𝐶𝐶𝑛𝑛𝑃𝑃𝑛𝑛(cos𝜃𝜃)𝑒𝑒 
−𝛼𝛼𝑛𝑛𝑡𝑡],      𝛼𝛼𝑛𝑛 = 𝛿𝛿 + 𝑖𝑖𝑖𝑖, (S3) 

where R is the drop radius, ε represents a small parameter that measures the amplitude of the 

drop deformation during axisymmetric shape oscillations, δ the decay factor, ω the frequency 

of shape oscillation, Pn (cos θ)  the Legendre polynomial, Cn an unknown coefficient, and n the 

mode of oscillation (n = 0 corresponds to radial oscillation without a change in shape, 1 pure 

translational motion of the drop, and 2 quadrupole shape oscillation). From Eq. (S3) it follows 

that p, v, and τ are proportional to 𝑒𝑒 
−𝛼𝛼𝑛𝑛𝑡𝑡, with time-dependent coefficients of proportionality.2 

The displacement vector u can then be calculated from the velocity vector v by time integration 



 

 

of only 𝑒𝑒 
−𝛼𝛼𝑛𝑛𝑡𝑡. In this case, the Kelvin-Voigt model [Eq. (S1)] reduced to the Newtonian fluid 

model with effective viscosity: 

  𝜏𝜏(𝑛𝑛) = 2𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒𝛾̇𝛾(𝑛𝑛),       𝜇𝜇𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜇𝜇 − 𝐺𝐺𝛼𝛼𝑛𝑛−1 (S4) 

The general solution for p, v, and τ looks like:  
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(S5) 

where r is the position vector, ωL the Lamb frequency, k the wave number, ρ the density of the 

liquid, jn the spherical Bessel function of order n, and An and Bn unknown coefficients. The 

substitution of Eq. (S5) into the continuity and Navier-Stokes equations leads to a linear system 

of algebraic equations in An, Bn, Cn (see Ref. 2) from which the following characteristic equation 

is obtained:  
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S1.1 Low viscosity limit 

For the limiting case when the effective viscosity is low (z → ∞), we obtain simple formulae 

for viscosity µ and elastic modulus G:  
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(S7) 

In the case of quadrupole oscillation (n =2), Eq. (S7) is reduced to Eq. (4) in the main text.   
 

S1.2 High viscosity limit 

For the limiting case when the effective viscosity is high, the viscosity and elastic modulus are 

of the form 
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(S8) 

 

For quadrupole oscillations (n = 2), F1 = 16.524 and F2 = 7.6 and  

 𝜇𝜇 = 4.348 𝛿𝛿𝛿𝛿𝑅𝑅2,    𝐺𝐺 = 𝜌𝜌𝑅𝑅2(2.174𝜔𝜔2 − 0.132𝜔𝜔𝐿𝐿
2 + 2.174𝛿𝛿2)  (S9) 

 
S1.3 Forced oscillation of a viscoelastic drop 

To derive the equation for forced oscillation, the surface profile of the drop [Eq. (S3)] and the 

boundary conditions [Eq. (S2)] were substituted into the radial component of the Navier-Stokes 

equations at the drop surface. Using the derivative of the pressure outside the drop as the forcing 

term, we then got the following driven harmonic oscillator equation: 
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The steady state solution for Eq. (S10) is  
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where φ is the phase shift.  



 

 

Section S2. Peak frequency for medical viscosity standard fluids 

Figure S1 shows that the normalized peak frequency changed insignificantly between MVS 

fluids with viscosity from 4.0 to 6.0 cP. There was a slight, insignificant increase in the 

frequency for lower viscosity MVS fluids due to the multiple peaks in the AFR curve. Thus, 

ωpeak is not sensitive to fluid viscosity. 
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Fig. S1: Normalized peak frequency for medical viscosity standard fluids with viscosity 
1.2cP (black), 1.6cP (pink), 2.0cP (green), 4.0cP (blue), 6.0cP (yellow) and 10cP (red). 
Sample size n = 9. “ns” stands for not significant.  

 


