Supplementary Information

Ceiling culture chip reveals dynamic lipid droplet transport during adipocyte dedifferentiation via actin remodeling

Authors

Jiwon Kim, a† Kun-Young Park, b† Sungwoo Choi, b Ung Hyun Ko, a Dae-Sik Lim, c,d Jae Myoung Suh, b and Jennifer H. Shin a

a Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

b Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

c National Creative Research Center for Cell Plasticity, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

d Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea

† These authors contributed equally to this work.

Contents

Supplementary Figure 1
Supplementary Figure 2
Supplementary Figure 3
Supplementary Figure 4
Supplementary Figure 5
Supplementary Figure 6

Captions for Supplementary Video 1-7
Supplementary Figure 1

<table>
<thead>
<tr>
<th>Irregularity (Subjective)</th>
<th>Perfectly circular</th>
<th>Irregular</th>
<th>More irregular</th>
<th>Extremely irregular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circularity</td>
<td>0.899</td>
<td>0.635</td>
<td>0.272</td>
<td>0.161</td>
</tr>
<tr>
<td>Roundness</td>
<td>1</td>
<td>0.658</td>
<td>0.348</td>
<td>0.496</td>
</tr>
<tr>
<td>Shape index</td>
<td>0.948</td>
<td>0.646</td>
<td>0.306</td>
<td>0.282</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irregularity (Subjective)</th>
<th>Perfectly circular</th>
<th>Perfectly circular</th>
<th>Perfectly circular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circularity</td>
<td>0.928</td>
<td>0.912</td>
<td>0.902</td>
</tr>
<tr>
<td>Roundness</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Shape index</td>
<td>0.963</td>
<td>0.955</td>
<td>0.950</td>
</tr>
</tbody>
</table>

Supplementary Fig. 1. Comparison of various indices for morphological quantification.
Supplementary Figure 2

Supplementary Fig. 2. Shape index distributions of vWAT adipocytes over time. I-shaped bars represent mean ± s.d. n=15 each. p-value from one-way ANOVA with Fisher’s LSD post hoc test. t-value from two-tailed t-test v.s. Day n-2 data of the same group.
Supplementary Figure 3

(1) Secretion involving mechanical vibration
The lipid droplet vibrates vigorously before the secretion.

Supplementary Fig. 3.a. Mechanical vibration involved secretion, case 1 (Cell featured Fig.4)

(2) Secretion involving crescent-shaped band structure
A rope-like structure, shown as a crescent-shaped band, appears and squeezes the LD to suddenly extrude it from the cell (Supplementary Video 3). Band structure is indicated by solid arrowheads.

Supplementary Fig. 3.c. Crescent-shaped band structure involved secretion, case 1
(Cell featured Supplementary Video 3)
(3) Secretion involving sudden cellular elongation

Lipid droplets get extruded soon after the sudden elongation of the cell.
Supplementary Fig. 3.g. Timepoints of liposecretion events
(Two points connected with the dotted line indicate a single event)
Supplementary Figure 4

Supplementary Fig. 4. Blebbistatin suppresses LD secretion.

a Representative image of dedifferentiation of the control group. Cells undergoing dedifferentiation moved around dynamically (scale bar = 200μm).

b Representative images of 50μM blebbistatin treatment group. Cells are in a motionless state compared to the control group (scale bar = 200μm).

c Shape indices of control group and blebbistatin treatment group. On day 5, the shape indices of the blebbistatin treatment group are significantly higher than those of the control group. t-value from two-tailed t-test. n=76, 50, 87, and 54 for Ctrl Day 1, Blebb Day 1, Ctrl Day 5, and Blebb Day 5 respectively.
Supplementary Figure 5

Supplementary Fig. 5. Shape index distributions of control mT/mG mice adipocytes and Lats1/2 iAKO mice adipocytes at Day 5. t-value from two-tailed t-test. n=82 and 124 for Ctrl and Lats1/2 KO respectively.
Supplementary Fig. 6. Adipocyte-specific suppression of the Hippo pathway induces a unique mode of LD secretion into adjacent adipocytes.

a) Schematic diagram for 4-hydroxytamoxifen (4OHT)-inducible Lats1/2 knockout and labeling primary adipocytes from Lats1/2 iAKO (Adipoq-CreER¹²; Lats1/2^{flox/flox}; tdTomato) mice.

b) Experimental scheme for adipocyte isolation and deletion of LATS1/2 in adipocytes from control (Adipoq-CreER¹²; tdTomato) or Lats1/2 iAKO mice and their analysis for 6 days.

c) Time-lapse imaging of intercellular lipid exchange between adipocytes isolated from Lats1/2 iAKO mice. Relative time from 4d:18h:45m. Scale bar, 50μm.
Supplementary Video 1
Adipocyte undergoing dedifferentiation is making pseudopod structures towards the moving direction.

Supplementary Video 2
Abrupt distortion of cellular morphology before the whole lipid droplet secretion.

Supplementary Video 3
Ring-like structure is observed to sweeping the lipid droplet.

Supplementary Video 4
Dedifferentiated cell which is still expressing the GFP signal is dividing into two daughter cells.

Supplementary Video 5
Lipid contents of cells are being transferred to neighboring cell. Meanwhile, the sizes of donor cells are decreasing.

Supplementary Video 6
Lipid content of WT BODIPY+ cell is being transferred to neighboring mTmG cell. Meanwhile, the sizes of donor cells are decreasing. Relative time from 1d:4h:30m

Supplementary Video 7
Adipocyte-specific activation of YAP/TAZ induces a unique mode of liposecretion into adjacent adipocytes A Schematic diagram for 4-hydroxytamoxifen (4OHT)-inducible LATS1/2 knockout and labeling of primary adipocytes from Lats1/2 iAKO (Adipoq-CreER^{T2}; Lats1/2^{flox/flox}; tdTomato) mice. Relative time from 4d:18h:45m.