Similar Colors Analysis based on Deep Learning (SCAD) for Multiplex Digital PCR *via* Single Fluorescent Channel

Chaoyu Cao^{1,2}, Minli You^{1,2*}, Haoyang Tong^{1,2}, Zhenrui Xue^{2,3}, Chang Liu^{1,2}, Wanghong He^{2,4}, Ping Peng^{2,3}, Chunyan Yao³, Ang Li⁴, Xiayu Xu^{1,2}, Feng Xu^{1,2*}

¹ The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China

² Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China

³ Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China

⁴ Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, P.R. China

* Corresponding authors: youminli@xjtu.edu.cn; <u>fengxu@mail.xjtu.edu.cn</u>

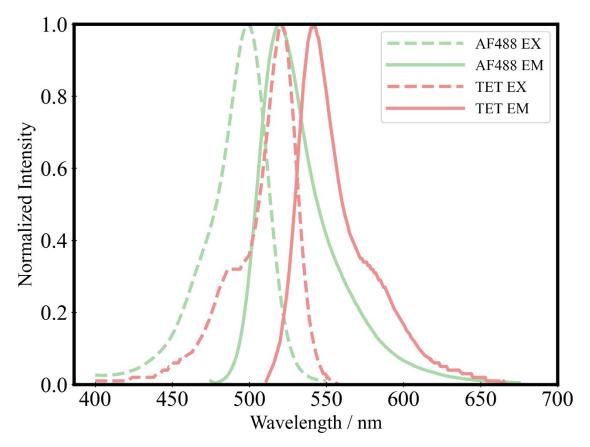
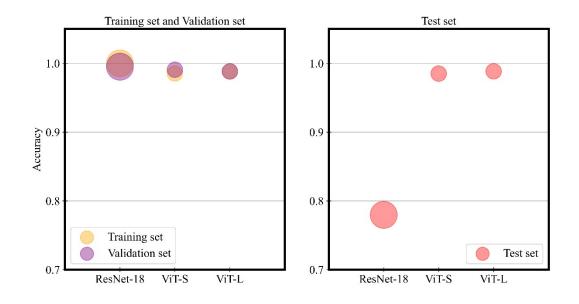



Figure S1. Excitation (EX) and emission (EM) spectrums of AF488 and TET.

	Gene (85)	CACACCAGTGACAATATCACCGTTGGGATCGACGGCACCGAC ATCGCTTTTGGTGGCTGCCTGATCAAGGACAGCAAGGCCAAGT
bla_{NDM}	NDM-F	CACACCAGTGACAATATCACCGTTG
	NDM-R	ACTTGGCCTTGCTGTCCTTGAT
	Probe	TCGACGGCACCGACATCGCTT

Table	S1 .	dPCR	reaction	system	design
1 4010	NI •		reaction	5,500111	aesign

bla _{VIM}	Gene (258)	CTTCGGTCCAGTAGAACTCTTCTATCCTGGTGCTGCGCATTCG ACCGACAACTTAGTTGTGTACGTCCCGTCTGCGAGTGTGCTCT ATGGTGGTTGTGCGATTTATGAGTTGTCACGCACGTCTGCGGG GAACGTGGCCGATGCCGATCTGGCTGAATGGCCCACCTCCATT GAGCGGATTCAACAACACTACCCGGAAGCACAGTTCGTCATTC CGGGGCACGGCCTGCCGGGCGGTCTAGACTTGCTCAAGCACA C
	VIM-F	CTTCGGTCCAGTAGAACTCT
	VIM-R	GTGTGCTTGAGCAAGTCT
	Probe	ATGCCGATCTGGCTGAATGGCCCAC

Figure S2. Performance comparison of ResNet-18 and ViT. Performances of ResNet-18, ViT model on small dataset (ViT-S) (7000 images in training set and 3000 images in test set) and ViT model on larger dataset (ViT-L) (70000 images in training set and 30000 images in test set) are compared. Radius of the scatters indicates MACs (1.49G for ResNet-18 and 0.86G for ViT).

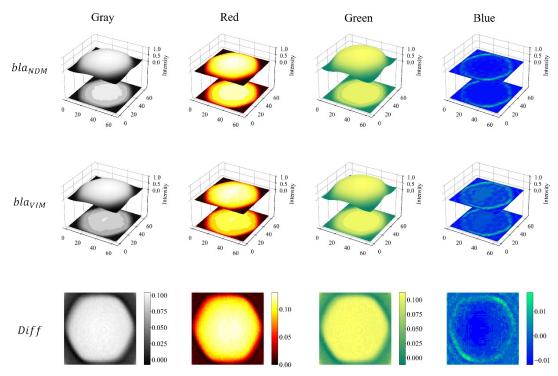


Figure S3. The intensities spatial distribution of gray and RGB values within bla_{NDM} and bla_{VIM} microwells (the first and the second rows) and their difference (the third row). Gray intensities in the figure were normalized by the maximum value in the gray intensities of bla_{NDM} and bla_{VIM} merged images. RGB values are normalized by the maximum value in all three channels for bla_{NDM} and bla_{VIM} merged images.

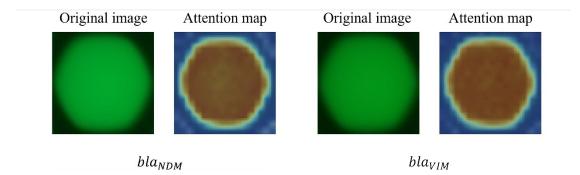


Figure S4. Attention map for the last layer of ViT.

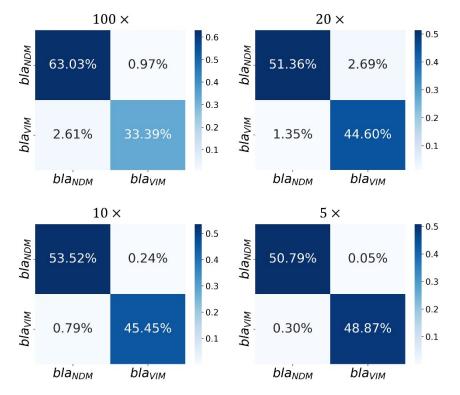


Figure S5. Confusion matrix for test set on different concentration.

Figure S6. Quantification results for bla_{NDM} and bla_{VIM} dual target samples by intensity-based method (Gaussian multi-peak fitting on intensity distribution histogram). Both gene have unstable performance on quantification.