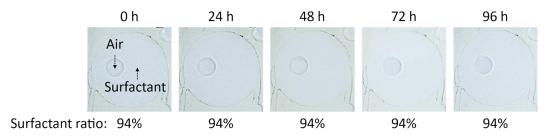
Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2022

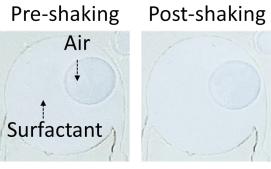
Supplementary Information:

Autonomous wearable sweat rate monitoring based on digitized microbubble detection

Haisong Lin^{‡*ab}, Wenzhuo Yu^{‡a}, Jorge Emiliano De Dios Suarez^a, Harish Athavan^a, Yibo Wang^a, Chris Yeung^c, Shuyu Lina, Sriram Sankararamand, Carlos Millae, Sam Emaminejadaa


^aDepartment of Electrical and Computer Engineering, UCLA ^bDepartment of Mechanical Engineering, University of Hong Kong ^cDepartment of Material Science and Engineering, UCLA ^dDepartment of Computer Science, UCLA eStanford School of Medicine, Stanford University

[‡]These authors contributed equally: Haisong Lin, Wenzhuo Yu *Corresponding author: emaminejad@ucla.edu; linhs@hku.hk


Supplementary Figures:

Supplementary Fig. 1. a) Cross-view schematic of the device-epidermal interface. b) Overview of the sweat collection and sweat rate sensing process.

Supplementary Fig. 2. Optical images to demonstrate the preservation of surfactant over time. Surfactant ratio maintains at the same level for 96 hours.

Surfactant ratio: 83% 83%

Supplementary Fig. 3. Optical images to demonstrate the preservation of surfactant within the device under shaking. Surfactant ratio maintains at the same level before and after sharking (1000 rpm) of 2 hours.