Supplementary Information for:

Ultrathroughput Immunomagnetic Cell Sorting Platform

David N. Philpott^a, Kangfu Chen^b, Randy Atwal^{b,c}, Derek Li^b, Jessie Christie^b, Edward H. Sargent^{a,d,e}, Shana O. Kelley^{b,c,d,f,g*}

^a Edward S. Rogers Sr. Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada

^{b.} Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada

^{c.} Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA

^d Department of Chemistry, University of Toronto, Toronto, Ontario, Canada

e. Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA

^{f.} Department of Chemistry, Northwestern University, Evanston, IL, USA

^{g.} Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA

Contents:

Supplementary Table 1: Comparison of Sorting Technologies

Supplementary Table 2: Cartridge Channel Cross Sections

Supplementary Table 3: Simulated Outlet Flowrate Distribution

Supplementary Table 4: RIE Plasma Etch Rates

Supplementary Table 5: Hydrophobic Treatments

Supplementary Table 6: Isolation of Clinically Relevant Numbers of Mature NK Cells

Supplementary Figure 1: Photographs of NG-MICS components

Supplementary Figure 2: Dimensioned Drawings of NG-MICS components

Supplementary Figure 3: Device Simulations and External Setup

Supplementary rable 1. comparison of Softing recimologies					
	Magnetic-activated cell sorting (MACS)*	Fluorescence-activated cell sorting (FACS) [‡]	Microfluidic cell sorting (NG-MICS)		
Number of			3 for NG-MICS, some first-		
Subpopulation	2	4 or fewer	generation MICS designs with 4 and 10		
Types of Markers Extracellular proteins and intracellular proteins (with permeabilization)		Extracellular proteins and intracellular proteins (with permeabilization)	Extracellular proteins (NG- MICS) and intracellular proteins and mRNA (with permeabilization)		
Number of Markers	1	Up to 15	1		
Cell Throughput	2x10 ⁸ /column ⁺ total, with max 10 ⁷ labeled cells /column	Theoretically up to 7.2x10 ⁷ event per hour, often lower	2.1x10 ⁸ cells per hour per device [§]		
Sorting Solution	Blood or buffer	Buffer	Blood or buffer		
Parallelization	Yes, up to 8	No	Yes, first gen MICS demonstrated up to 30		
Advantages	Speed, comparatively lower cost than FACS	Multiplexing, precision, isolation of rare cells	Speed, >2 populations, high cell viability, parallelization		
Disadvantages	Binary sort, low recovery, difficulty isolating rare cells	Low throughput, trade off with viability at throughout increases, cost	Technology readiness level, single-marker		

Supplementary Table 1 : Comparison of Sorting Technologies

*All metrics for OctoMACS sorter with MS column, [†]Approximately 20-30 minutes to run a column. [‡]All metrics for BD FACS Aria, [§] up to 4.4x10⁸ theoretically possible

Supplementary Table 2 : Simulated Outlet Flowrate Distribution

Outlet	Ideal Distribution (%)*	Simulated Distribution (%)
Low	56.2	56.25
Medium	32.3	32.28
High	11.5	11.47

*Distribution corresponds to flowrates of using a 20ml, 10mL and 3 mL syringe to drive flow

Supplementary Table 3 : Cartridge Channel Cross Sections

Level	Number of	Square Side
	branches	Length (mm)
1	2	1.00
2	4	0.794
3	8	0.630
4	16	0.500*

*radius, lofted to circle cross section

Treatment	Thickness (µm)	Error (µm)	Time (s)	Power (W)	O ₂ Pressure (mtorr)	Calculated Etch Rate (nm/s)
Bare SU-8	118.2	3.7	N/A	N/A	N/A	N/A
Plasma Asher	118.0	3.7	60	100	300	2.2
Plasma Asher	117.6	1.3	60	250	300	9.4
Plasma Asher	115.8	0.8	60	250	2000	39.4
Plasma Asher	86.5	2.4	1800	250	600	17.6
Plasma Asher	82.3	2.1	1800	250	1000	19.9
RIE Plasma	116.4	0.7	60	50	100	28.9
RIE Plasma	116.0	1.5	60	250	100	35.6
RIE Plasma	98.4	5.9	300	250	100	65.9
RIE Plasma	107.2	1.5	120	150	100	91.1

Supplementary Table 4 : RIE Plasma Etch Rates

Supplementary Table 5 : Hydrophobic Treatments

Treatment	θ _{Contact} (°)	Droplet	Profilometer Roughness (nm)	Profilometer Surface	Atomic Force Microscopy Roughness (nm)
Bare SU-8	83.4 ± 0.5		18.7 ± 2.4	E 0.01 -0.01 -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 μm	4.73 ± 1.2
RIE Plasma	17.0 ± 5.1		247.3 ± 16.0	L.5 1.5 1.5 -0.5 -0.5 -1.0 -0.5 -1.0 -0.5 -1.0 -0.5 μm	355 ± 69
RIE Plasma SAM	154.7 ± 0.7	0	371.4 ± 3.2	L 1.5 1.0 0.5 -0.5 -1.5 2δ0 4δ0 μm	512 ± 16

Number of mature NK cells required	10 ⁸ cells
Frequency of mature NK cells in total NK	0.86
population	
Frequency of NK cells in PBMC	0.20
Total number of PBMCs to process	5.8x10 ⁸ cells
Concentration of PBMCs	3x10 ⁶ cells/ml during experiments*, 1.3x10 ⁷
	cells/ml possible
Nominal flow rate	8 ml/hr
Sample flow rate	7.11 ml/hr
NG-MICS NK-isolation throughput ⁺	1x10 ⁷ PBMCs/hr/device experimental, 4x10 ⁷
	PBMCs/hr/device theoretical
Required to process 5.75x10 ⁷ PBMCs	57.5 device hours (experimental), 14.4 device
	hours (theoretical)
Time required across four devices	14.3 hours (experimental), 3.6 hours (theoretical)

Supplementary Table 6 : Isolation of Clinically Relevant Numbers of Mature NK Cells

*due to the small amount of cells during experiments, samples were diluted to prevent small sample volumes (< 500 μ L) being affected by dead volume. For clinically-relevant numbers of cells, dilution would not be required.

⁺accounting for CD3 depeltion sorts followed by CD56 enrichment and reduced cell numbers for reach resort. Cells concentrated between sorts.

Supplementary Figure 1 – Photographs of NG-MICS components (A) Glass slide with channel structures and deflection guides (B) Bottom of clamp set up with neodymium magnets and spacers (C) Top pf clamp with interconnects (D) Side profile of clamp (E) 3D printed cartridge side view showing branching network (F) Perspective view of cartridge. Gaps in middle are to reduce resin consumption.

Supplementary Figure 2 – Dimensioned Drawings of NG-MICS components (A) Slide top view, units in mm (B) Top view of outlets of one sorting lane, units in mm (C) Side view of cartridge, units in mm (D) Front view of cartridge, units in mm

. 13.59

6.8

3.15

27.2

Supplementary Figure 3 – Device Simulations and External Setup (A) Computational fluid dynamic simulations of channel structures at a nominal flow rate of 15 ml/hr. Streamlines from sample inlet shown in red) and buffer inlet green. Channel height set to 100 μm (B) Computational fluid dynamic simulation of entire branched network including herringbone structures. Nominal flow rate of 50 ml/hr. (C) Dimensioned view of soft lithography resistance chip. Height of channels were 100 μm. (D) Example of the user interface programmed on Raspberry Pi. All values were updated in real time. (E) Wiring diagram of Arduino, I2C Multiplexer and flow sensors. Arduino connected to Raspberry Pi via USB. (F) Flow rate comparison between pressure driven flow set up and syringe driven flow set up.