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Figure S1. Flow velocity simulated by fluorescent polystyrene beads of 0.2μm diameter. Dot:  

The velocity of the collected particles distributed along with the x-locations. Blue line 

indicates average of all collected particles’ velocity and red dash lines indicate standard 

error. 
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Figure S2. Shape factor to adjust the mesenchymal morphology of KIC cells in relative 

gradient of the chemical concentration across the cell body ( )  . 
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Figure S3. Relationship between ternary logic gate model and analytic expression for 𝚫𝒎 

There is a one-to-one correspondence between the (A) ternary logic gate model as shown 

in Figure 5 analytic expression for 𝚫𝒎 in Eq. 3. The expression of the output (Y) in Figure 5 

can be written as 𝒀 = (𝒇(𝟏 − |𝒈|) + 𝒈) × (𝟏 − 𝒄̅),  where 𝒈 = 𝟏  if 𝚫𝑻𝑮𝑭  is positive and 

above the detection limit, 𝒈 = 𝟎 if 𝚫𝑻𝑮𝑭 is below the detection limit or absent, and 𝒈 =

−𝟏 if 𝚫𝑻𝑮𝑭 is negative and above the detection limit;; 𝒇 = 𝟏 if the pressure gradient is 

positive (such that the flow is in the negative direction and cells would move in the positive 

direction upstream), 𝒇 = 𝟎 if flow is absent, and 𝒇 = −𝟏 if the pressure gradient is negative; 

and 𝒄̅ = 𝟏 if the background TGF concentration is above the saturation limit (~10 nM as 

indicated in Figure 4D), and 𝒄̅ = 𝟎  if the background TGF concentration is below the 

saturation limit.. In A, the vertical axis is 𝒀, the horizontal axis is 𝒈, the legend indicates 𝒇, 

and 𝒄̅ = 𝟎. In B, the sign of Eq. 3 is plotted with the parameters fitted in the main text, where 

𝟐. 𝟔𝟒 × 𝟏𝟎−𝟑 nM is the concentration at which 𝚫𝒎 changes sign in the presence of flow. In 

both cases, we see that the output only reflects the flow state if the chemical gradient is 

absent (A) or sufficiently small (B). 
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Figure S4. Concentration profiles of the chemical cue integrated with fluidic cue with various 

Pe numbers (Pe=0, 0.63, 1.26, and 3.8) for each flow condition of (A) no-flow, (B) parallel 

flow, and (C) counter flow.  
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Physical model- shared pathway model  

The dynamics of x, y, b and m from the network in Fig. 4A are given by, 

1 2x k c k x= −  

3 4y k f k y= −  

( )( )5 6 7 0 8b k k x k y b b k b= + + − −  

9 10m k b k m= −  

Where 𝑏0 is the total amount of molecules of type A and B. 𝑘𝑖s are rates of reactions, c is the 

external chemical concentration and f is the corresponding effect due to the flow. The 

underlying assumption of putting f and c in the same footing is that both the chemical signal 

and flow activates internal molecules X and Y in the cell. The steady state expression of m is, 

𝑚 =
𝑘9

𝑘10

[𝑘5 + (
𝑘6𝑘1

𝑘2
) 𝑐 + (

𝑘7𝑘3

𝑘4
) 𝑓] 𝑏0

𝑘5 + 𝑘8 + (
𝑘6𝑘1

𝑘2
) 𝑐 + (

𝑘7𝑘3

𝑘4
) 𝑓

 

To determine the difference of m between two halves of the cell we use, 

Δ Δ Δ
m m

m c f
c f

 
 +
 

 

Where the first term is the contribution due to the chemical gradient and the second term is 

the contribution due to the flow. Simple algebra leads to the expression, 
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     =
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+ +    
+ +     

 

Where c  is the background chemical concentration and c  is the difference of chemical 

molecules between two halves of the cell and f  and f  are the corresponding effect due to 
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the flow. c  and c  can be rewritten in terms of known quantities as 'a g  where 'a  is the 

cell length and g  is the chemical gradient. 

We can also define the following parameters, 

9 0
0

10

k b
m

k
= ; 5

5 8

k

k k
 =

+
; 6 1

2 5 8( )
c

k k

k k k
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+
; 7 3

4 5 8( )
f

k k

k k k
 =

+
 

Where m0 represents a concentration scale, μ is a dimensionless ratio for b reaction, and βi 

can be understood as a reaction efficiency from the cue to m. If βi is larger, faster reaction 

rates and slower dissociation rates for the specific pathway to convert m. (i.e. βc ↑ when k1 

↑, k6 ↑ and k2 ↓) To get the expression in Eq.3 in the main text, 

0 2
(1 )

(1 )

c f

c f

ga f
m m

c f

 


 

+ 
 = −

+ +
 

Here, we can define dimensionless parameters, implying “amplification factor” (ηi), including 

a reaction efficiency and signal strength.  

   ,c c f fc f   = =  

Now observations from our own cancer cell migration experiments suggest there is always a 

random component to migration (mean and median DAI is always less than the maximum 

possible value 1). Moreover, DAI is bounded between -1 and 1 and Δ𝑚 is unbounded. So, to 

draw a more direct analogy of Δ𝑚 to DAI we define the probability distribution of migration 

angles 𝜃 as a function of Δ𝑚 as a biased random walk model 1 

𝑝(𝜃) =
1 − 𝛼

2𝜋
+

𝛼𝑒−(Δ𝑚) cos 𝜃

2𝜋𝐼0(Δ𝑚)
. 

Where, 0 ≤ 𝛼 ≤ 1  is the maximum possible mean DAI (DAI∫ 𝑐𝑜𝑠(𝜃) 𝑝(𝜃)𝑑𝜃
2𝜋

0
=) and 𝐼0 is 

the modified Bessel function of the first kind. The value of Δ𝑚 suggests how close mean DAI 

is to 𝛼. The larger and positive Δ𝑚 is the closer mean DAI is to 𝛼 and as Δ𝑚 → ∞, DAI → 𝛼 .  
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Now we set 𝛼, 𝑚0, 𝜇, 𝛽, 𝜙(= 𝛽𝑓∆𝑓),  and 𝜂𝑓(= 𝛽𝑓𝑓)  are the unknown parameters. Among 

these we set 𝛼 equal to the maximum mean DAI in experiments in Fig. 4C. The other four 

unknown parameters are set to give minimum total absolute error between the experimental 

median DAI and median DAI using our model in experiments shown in Fig. 4C. The best set of 

parameter values are, 

 ( )0 1 3003.9; 0.9073; 0.0018; 1.6612.c fm    − = = = =  
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Analogy between cellular selection of a specific cue direction and signal processing through 

the shared pathway model. 

We can define the relative gradient of each cue across the cell body, which could indicate the 

extracellular cue strength.  

     ,c f

c f

c f
 

 
= =  

Then Δm can be represented as: 

0 2
(1 )

(1 )

c c f f

c f

m m
   


 

+
 = −

+ +
 

The difference of molecule m (Δm) corresponding to the cellular directional accuracy can be 

dependent on the cell type (μ), extracellular strength for each cue (γ) and each cue’s 

amplification ability through the signaling pathway (η). We define the relative extracellular 

cue strength   and the relative intracellular pathway strength to get an expression in Eq.5. 

  

In the experiment, we observed that cells select a chemical cue to follow in their movement 

direction, specifically when the counter flow was applied. Based on this understanding, we 

developed rationales for how the cells can preferentially select a specific cue (in our results, 

chemical cue to fluidic cue) with the sign of Δm.  

2

0

(1 )
(1 )

(1 )

c c

c f

m

m

  


 

+
= −

+ +
 

Where the relative fluidic cue strength ε is defined as γf / γc, and the relative fluidic pathway 

strength ρ= η f / ηc. The counter flow can be described with negative ε (
f < 0 and 

c > 0) 

where pathway strength is always positive (ρ > 0). We define the cellular section of the 
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chemical cue when Δm>0, whereas the selection of the fluidic cue when Δm<0. Consequently, 

the sign of Δm is determined by (1+ερ).  

We can also consider the total cue strength and pathway strength, (
c f  = + and 

c f  = + , respectively). Then, the equation converted to the following form:  

2

0

(1 )
(1 )

(1 )(1 )(1 )m

m  


  

 +
= −

+ + +
 

Where ω=γc(1+ε), below conditions are satisfied in any case.  

ρ > 0, ψ > 0 

2
0

(1 )(1 )(1 )



  


+ + +
 

Consequently, the sign of Δm is determined by (1+ερ) regardless of ω and ψ. 

As we represented in Fig. 6, ε can be bounded depending on the physiologically possible 

strength range of the cues. Specifically, we have analyzed that the fluidic cue can vary the 

chemical gradient profile. In that sense, the chemical cue strength (
c ) and fluidic cue strength 

(
f ) are dependent. When the flow velocity increases, the chemical gradient strength is 

intuitively expected to decrease. However, the chemical cue strength defined as a relative 

gradient across the cell body is larger than 1% since cells only can capture the shallow gradient 

over 
c =1%. Therefore, the minimum possible 

c  can be 0.01. The physiological range of the 

flow velocity has been reported as tissue-dependent. In the tumor microenvironment, the 

flow velocity is in the low Reynolds number range of 0.5–4μm/s 2-4.  

The fluidic cue is relevant to the interstitial flow velocity over the cell surface 5. Although it has 

still been elusive how the cells can sense the fluidic cue, we assume that the fluidic cue 

strength is linearly proportional to the interstitial flow velocity. Here we do not consider the 
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autologous chemotaxis by the flow. The proposed model estimated 
f  as 0.0011. Then the 

relative fluidic cue strength (ε) is physiologically possible in the range:  

0.29   

In the range, the cells have a higher chance of preferentially selecting the chemical cue in their 

migration direction (Fig. 6).  
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