Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2022

Investigation of Particle Manipulation Mechanism and Size Sorting Strategy in Double-layered Microchannel

Zhang Boran^{2,3}, Yang Fan⁴, Wu Wenshuai^{5,*}, Wan Wuyi³, Zhao Wenhan², Zhao Qianbin^{1,*},

- 1. Center for Health Science and Engineering Hebei Key Laboratory of Biomaterials and Smart Theranostics School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China
- 2. School of School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
- 3. Department of Hydraulic Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P. R. China
- 4. College of Engineering, Peking University, Beijing 100871, China
- 5. Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China.

*Corresponding Authors: <u>wuwenshuai@zju.edu.cn</u>;

qz260@uowmail.edu.au

Supplementary information: Boundary conditions of numerical model

Table 1. Step1: Stationary study of Laminar flow

Fluid properties		Inlet		Outlet	Initial value		Wall
Density	997 (kg/m3)	Flow condition	Fully developed	Pressure control	Velocity field	[u=0 v=0 w=0])] No
Dynamic viscosity	1.0016 (mPa·S)	Flow rate	1000 (μL/min)	0 Pressure (Pa)	Pressure	0	slip

Table 2. Step2: Time dependent study of particle tracing

Particle properties		Releasing		Wall Condition		Forces	
Density	1050	Initial	Inlet,	Side walls	Bounce	Drag force	Eqns.
	(kg/m3)	Location	Mesh based				(1)-(3)
Diameter	Int [1,10]	Initial	T' Cl C'.11	Outlet	Freeze	Lift force	Eqns.
	(µm)	velocity	Laminar flow field				(4)(5)

Supplementary information: Inertial focusing validation of the numerical model.

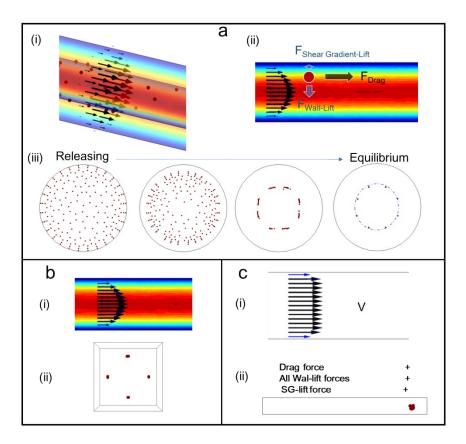


Figure S1 Numerical model validation on inertial equilibrium positions in straight microchannel. (a) Circular microchannel. *i* Velocity distribution, *ii* Hydraulic forces on a microparticle, *iii* Equilibrium positions. (b) Squared microchannel. *i* Velocity distribution, *ii* Equilibrium positions. (c) Double layered microchannel with groove arrays. *i* Velocity distribution, *ii* Equilibrium positions.

Supplementary information: Controlling equations of hydraulic forces.

The formula to calculate drag force (F_d) is associated with relative Reynolds number (Re_r) , which can be estimated by Eqn. (1):

$$F_{\rm d} = \frac{m_{\rm p} \left(\mathbf{u} - \mathbf{v} \right)}{\tau_{\rm p}} \tag{1}$$

$$\tau_{\rm p} = \frac{\rho_{\rm p} \left(P_{\rm d}^2\right)}{18\mu} \tag{2}$$

$$Re_{r} = \frac{\rho \|\mathbf{u} - \mathbf{v}\| P_{d}}{\mu} \tag{3}$$

where ρ is the density of fluid, **u** is the fluid velocity vector, **v** is the particle velocity vector, P_d is the diameter of particle, and μ is the viscosity of fluid. In this study, the density of fluid (DI water), was 1000 kg/m³. The maximum magnitude of velocity was around 1E0 m/s. The particle diameter was in E-6 order of meter, and the viscosity of DI water was considered as 1 mPa·s. Hence the relative Reynolds number was less than 1, where the Stokes Drag Law was applicable, expressed as Eqns. (2)&(3) ¹. m_p is the mass of particle, τ_p is the particle velocity response time, and ρ_p is the density of particle (1050 kg/m³). The calculation of Wall-Lift force (F_L) was solved by the Eqn. (4) ²:

$$F_{L} = \rho \frac{P_{d}^{4}}{4D^{2}} \alpha \left[\alpha G_{1}(s) + \beta G_{2}(s) \right] \mathbf{n}$$
(4)

where D is the distance between the channel walls, G_1 and G_2 are functions of nondimensionalized wall distance s as given in ref. 2 , s is the nondimensionalized distance from the particle to the reference wall, divided by D. \mathbf{n} is the wall normal at the nearest point on the reference wall. Coefficients like α and β were obtained by Eqn. (5):

$$\begin{cases}
\alpha = |D(\mathbf{n} \cdot \nabla)\mathbf{v}| \\
\beta = |0.5D^2(\mathbf{n} \cdot \nabla)^2\mathbf{v}| \\
\mathbf{u}_p = [I - (\mathbf{n} \otimes \mathbf{n})\mathbf{u}]
\end{cases} \tag{5}$$

where I is the dimensionless identity matrix 2 .

Supplementary information: Front view of $2\mu m$ particle trajectory.

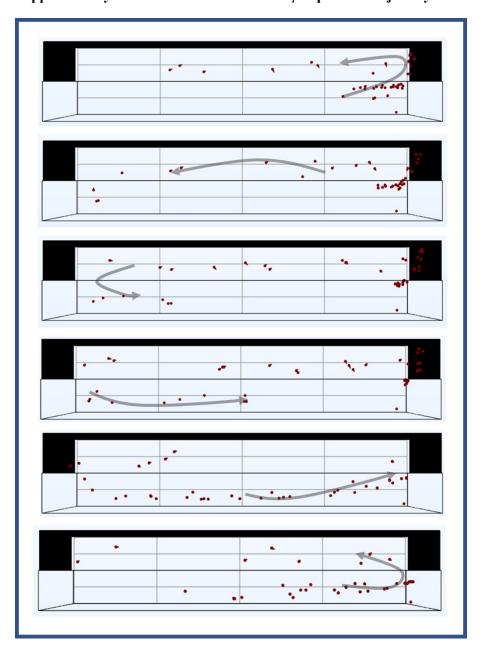


Figure S2 The trajectory of $2\mu m$ microparticles (front view).

References:

- 1. R. Clift, J. R. Grace and M. E. Weber, *Bubbles, Drops, and Particles*, Dover Publications, Incorporated, 2013.
- 2. B. Ho and L. Leal, J. Fluid Mech., 1974, 65, 365-400.