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1 Fully-developed laminar incompressible flow in a straight channel

Fluid flow of an incompressible (ρ = const.) Newtonian fluid in a channel is described by the Navier-Stokes
equations,

ρ
∂u

∂t
+ ρ div(u⊗ u)− div(2µD(u)− pI)− ρg = 0, (1a)

divu = 0, (1b)

with D(u) = 1
2

(
∇u+∇Tu

)
or component-wise in Cartersian coordinates (and simplifying the viscous term

using the continuity equation1),

ρ (∂tux + ux ∂xux + uy ∂yux + uz ∂zux) + ∂xp− µ
(
∂2
xux + ∂2

yux + ∂2
zux

)
− ρgx = 0, (2a)

ρ (∂tuy + ux∂xuy + uy∂yuy + uz∂zuy) + ∂yp− µ
(
∂2
xuy − ∂2

yuy + ∂2
zuy

)
− ρgy = 0, (2b)

ρ (∂tuz + ux∂xuz + uy∂yuz + uz∂zuz) + ∂zp− µ
(
∂2
xuz − ∂2

yuz + ∂2
zuz

)
− ρgz = 0, (2c)

∂xux + ∂yuy + ∂zuz = 0, (2d)

with velocity u = (ux, uy, uz)
T , pressure p, (constant) fluid density ρ, (constant) dynamic fluid viscosity

µ, gravitational acceleration g = (gx, gy, gz)
T , and ∂k(·) denotes the partial derivative ∂(·)/∂k. Stationary,

fully-developed laminar flow corresponds to the assumptions:

∂tu = 0, (3)

vx = vy = 0, (4)

where the coordinate z corresponds to the channel axis. That means, we have irrotational, layered, unidirectional
flow in the channel direction. From the continuity equation Eq. (2d), we obtain that ∂zuz = 0. Therefore,
Equation (2) can be simplified to a simple Poisson equation,

∂2u2
z

∂x2
+

∂2uz

∂x2
=

1

µ

(
∂p

∂z
− ρgz

)
:= −G

µ
, (5)

valid for arbitrary channel cross-sections. To be solvable, we need to provide boundary conditions on the channel
wall, which usually is the no-slip boundary condition u = 0, also referred to as homogeneous Dirichlet boundary
condition. G is a constant and measures the driving force.

Wall shear stress vectors are given by the tangential projection of the shear stress tensor onto the channel
boundary,

τw = σn− (σn · n)n, where σ = 2µD(u)− pI, (6)

where n denotes the outward-point unit normal vector on the channel wall. Wall shear stress (WSS) is then
defined as the magnitude of the wall shear stress vector, WSS :=∥τw∥.

2 Rectangular cross-sections

In a rectangular cross-section with width W := 2w and height H := 2h, W ≥ H, an analytic solution to Eq. (5)
is found by separation of variables, and given in [4] or [3], for x ∈ [−w,w] and y ∈ [−h, h],

uz(x, y) = G
h2

2µ

[
1− ŷ2 + 4

∞∑
k=1

(−1)k

β3
k

cosh bk
x
h

cosh bkγ
cos bkŷ

]
(7)

βk = (2k − 1)
π

2
, k = 1, 2, · · · ,

1div(2µD(u)) = div(µ∇u), due to divu = 0, i.e. for incompressible fluids.
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with ŷ = y/h (dimensionless height) and γ = w/h (aspect ratio). The flow rate is given by [3]

Q = G
H3W

12µ

[
1− 6

γ

∞∑
k=1

tanhβkγ

β5
k

]
:= GLt, (8)

where L denotes channel length, and t := Q
GL defines the channel transmissibility. The transmissibility is given

in the following for convenience. We also give an approximation for high aspect ratios W ≫ H (tanhβkγ ≈ 1),

t =
H3W

12µL

[
1− 6

γ

∞∑
k=1

tanhβkγ

β5
k

]
≈ H3W

12µL

[
1− 0.63

γ

]
. (9)

The wall shear stress in an axis-aligned rectangular channel allows for a simple expression due to the geometry.
The normal vector on the side wall is given by nx = (1, 0, 0)T . Since ux = uy = 0, and with Eq. (7) there is an
analytic expression for uz, we have

WSSx
∣∣
x=w

:= µ
∂uz

∂x
= GH

[ ∞∑
k=1

(−1)k

β2
k

tanhβkγ cosβkŷ

]
. (10)

The maximum wall shear stress occurs on mid-height of the channel (y = ŷ = 0),

WSSmax
x := WSSx

∣∣
x=w,y=0

= GH

[ ∞∑
k=1

(−1)k

β2
k

tanhβkγ

]
. (11)

We remark that the terms in brackets in Eqs. (7) to (9) and (11) are dimensionless. Therefore, the quantities
such as flow rate and maximum side wall shear stress can be obtained for different channel dimensions by a
simple scaling.

3 Characteristic numbers

We define the hydrodynamic diameter as Dhy = 2 HW
H+W . The Reynolds number is given by

Re =
V Dhyρ

µ
, (12)

where V is a characteristic velocity. It relates inertial to viscous forces. Pipe flow is assumed to be laminar for
Re ⪅ 2300. We estimate the effect of transient inertial forces in comparison to the viscous forces by computing
the Womersley number. Then the Womersley number is given by

Wo =
Dhy

2

(
ωρ

µ

) 1
2

. (13)

For Wo < 1 transient effects are expected to not play a significant role for the shape of the velocity profiles
(this concerns mostly inertia effect close to the boundary of the channel).

At the entrance of the channel, the flow is usually not fully developed yet. The hydrodynamic entry length
Le necessary to reach fully-developed flow (meaning a profile that deviates less than 1% from theoretical fully-
developed flow) has been estimated in rectangular ducts, e.g. [2], in the form

Le = Φ(γ−1)DhyRe (14)

where Φ depends on the (inverse) aspect ratio γ−1 = H/W of the channel. It it between Φ(0) ≈ 0.01 (parallel
plate solution) and Φ(1) ≈ 0.075, with Φ(2/3) ≈ 0.07, Φ(1/6) ≈ 0.025, see [2, Table 2].

4 Channels in this work

The channel dimensions and characteristics numbers of given in Table 1. We estimate the largest flow velocities
to be about 0.2m s−1. The frequency ω is given by the rotation frequency, and an upper bound in practical
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Figure 1: WSS distribution over height on the side wall and velocity contours for aspect ratio of Channel 2.
WSS, velocity, and width are normalized. Velocity and WSS are computed with Eq. (7) and Eq. (11).

applications is ω = 0.17 s−1 (10 rpm). The flow is therefore expected to be laminar in these channels (one of
the assumptions for the derivation of the channel transmissibility). Transient effects are expected to not play a
significant role for the velocity profiles (this concerns mostly inertia effect close to the boundary of the channel).
The entry length is relatively large so that the flow is only fully developed in the middle of the channel. This
means we make some error in the transmissibility estimate at large velocities, however, this is expected to be
less significant than other effects, e.g. capillary effects at the channel entrance. Since, we are interested in wall
shear stress (WSS) in the middle of the domain where most of the cells are growing, we expect WSS estimates
in the middle of the channel to be sufficiently accurate for the presented analysis.

Table 1: Channel dimensions and characteristic numbers for the rectangular cross-section channels analysed
with the mathematical model in this work. Reynolds number, Re, Womersley number Wo, and hydrodynamic
entry length, Le, are estimates based on the maximal velocities observed in the simulations (VC1s = 0.1m s−1,
VC1l = 0.12m s−1, VC2s = 0.1m s−1, VC2l = 0.12m s−1) and frequency ω = 0.17 s−1 which are at the upper end
of expected values, and ρ = 1× 103 kgm−3, µ = 1× 10−3 Pa s.

H W L Dhy H ×W × L Remax Womax Le,max

Channel 1 (short) 0.5mm 3.2mm 9.8mm 0.86mm 15.68 µL 85 0.18 1.8mm
Channel 1 (long) 0.5mm 3.2mm 16.4mm 0.86mm 26.24 µL 100 0.18 2.2mm

Channel 2 (short) 0.8mm 1.2mm 9.8mm 0.96mm 9.41 µL 100 0.20 6.7mm
Channel 2 (long) 0.8mm 1.2mm 16.4mm 0.96mm 15.74 µL 115 0.20 7.7mm

4.1 Transmissibility

Since the channels have aspect ratios close to 1, the approximate solution does not give good results and we
go with an approximation infinite series expansion, and cut the sum after 10 terms. Moreover, transmissibilty
depends on the fluid viscosity. For velocity measurements at room temperature and culture fluid, we use
µ20 ≈ 1mPa s. For wall shear stress calculations at different operating conditions, the temperature is set at
37 ◦C, and we use µ37 ≈ 0.8mPa s. Therefore, we report here two transmissibility values: t20 and t37. Recall
that flow rate is given by Q = GLt and the mean velocity can be computed by v̄ = Q/(HW ). Example: for a
pressure drop of 50Pa (upper estimate of what occurs during operation of the platform) over a channel length
L = 20mm, that is G = 2500Pam−1, and µ = µ37 we have v̄ = 0.1m s−1 for Channel 2 (long) which is what
we assumed as upper limit characteristic velocity in the Reynolds number estimates.
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Table 2: Channel transmissibilities for µ20 ≈ 1mPa s and µ37 ≈ 0.8mPa s. The product tL is independent of
the channel length and only depends on the cross-sectional dimensions.

t20 t37 unit

Channel 1 (short) 3.0664× 10−9 3.8330× 10−9 m3 Pa−1 s−1

Channel 1 (long) 1.8323× 10−9 2.2905× 10−9 m3 Pa−1 s−1

Channel 2 (short) 3.0683× 10−9 3.8353× 10−9 m3 Pa−1 s−1

Channel 2 (long) 1.8334× 10−9 2.2918× 10−9 m3 Pa−1 s−1

t20L t37L unit

Channel 1 3.0051× 10−11 3.7563× 10−11 m4 Pa−1 s−1

Channel 2 3.0069× 10−11 3.7586× 10−11 m4 Pa−1 s−1

4.2 Maximum wall shear stress

The maximum wall shear stress may be more conveniently expressed in terms of the flow rate Q = GLt ⇒ G =
Q/(Lt), such that it can be computed in a post-processing step from the simulated channel flow rates,

WSSmax
x =

QH

Lt

[ ∞∑
k=1

(−1)k

β2
k

tanhβkγ

]
. (15)

With values in SI units, WSSmax
x is in units of Pa and for reference, we state that 1Pa =̂ 10 dyne cm−2, a unit

often used for wall shear stress. Figure 1 can be used to determine the wall shear stress on the channel side
on specific height of the channel given WSSmax

x . Continuing the previous Example: for G = 2500Pam−1, and
µ = µ37 we have v̄ = 0.1m s−1 for Channel 2, thus Q = 95 µL s−1. Using the value of Table 3, we obtain
WSSmax

x,37 = 0.74Pa = 7.4 dyne cm−2.

Table 3: Maximum wall shear stress normalized by the channel flow rate Q for µ37 ≈ 0.8mPa s.

WSSmax
x,20/Q WSSmax

x,37/Q unit

Channel 1 6.17× 106 4.93× 106 m−3 Pa s
Channel 2 9.67× 106 7.74× 106 m−3 Pa s

5 Inertial effects

Sudden increases in the pressure gradient are possible due to the gyroscopic motion of the platform in interaction
with the reservoir geometry. Without inertial forces considered in the model, the flow rate can increase infinitely
fast. Continuing to assume fully-developed velocity profiles at all times, we can still account for inertial forces
needed to accelerate the fluid mass. The assumption on the velocity profile allows us to derived from Eq. (2) a
one-dimensional model, in form of a momentum and a mass balance (see e.g.[1]),

ρ
∂Q

∂t
+A

∂p

∂z
+

ρλ

A
Q = 0, (16)

ρ
∂Q

∂z
= 0, (17)

with the cross-sectional area of the channel, A := HW , and a friction coefficient λ. For stationary fully-developed
pressure-driven flow (Q = const.), we have

−∂p

∂z
= G =

ρλ

A2
Q, (18)

and we identify ρλA−2 ≡ (tL)−1. Thus we obtain from the momentum balance of the whole channel,

ρ

A

∂Q

∂t
−G+

1

tL
Q = 0. (19)
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We then continue to discretize in time using an backward Euler scheme for a given pressure gradient G,

ρ

A

Qk+1 −Qk

∆t
−G+

1

tL
Qk+1 = 0, (20)

where ∆t denotes the discrete time step size. Resolving for the flow rate Qk+1 at the current time and defining
ζ := ρtLA−1 (in units of seconds), yields with

Qk+1 =
ζQk +∆tGLt

ζ +∆t
, (21)

an explicit update for the flow rate in terms the flow rate of the previous time step Qk and the pressure gradient.
Note that we always start simulations with with equilibrium conditions such that Q0 ≡ 0. The equilibrium
condition can be obtained by running the simulation with ζ = 0 until Qk+1−Qk < ϵ, while keeping the platform
in the initial position.
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Appendix: Tilting function for constant tilt 
 
To derive the formulas for the tilting function, we first recall that the rotation of a vector about the 
x-axis (roll with angle 𝛾) and the y-axis (pitch with angle 𝛽) is given by the rotation matrix 

𝑅 = 	𝑅!(𝛽)	𝑅"(𝛾) = (
cos 𝛽 0 sin 𝛽
0 1 0

− sin 𝛽 0 cos 𝛽
1 (
1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾 cos 𝛾

1

= 	 (
cos 𝛽 sin 𝛽 sin 𝛾 sin 𝛽	cos 𝛾
0 cos 𝛾 − sin 𝛾

− sin 𝛽 cos 𝛽 sin 𝛾 cos 𝛽	cos 𝛾
1	. 

 
If the upward unit normal vector on the platform base, 𝑛, rotates with a constant tilt angle 𝜏 around 
𝑒# = [0,0,1]$, we have 
 

𝑛	(𝛽, 𝛾) = 𝑅𝑒# = (
sin 𝛽	cos 𝛾
− sin 𝛾

cos 𝛽	cos 𝛾
1	.	 

 
Moreover, we know that the normal vector can be parametrized in term of 𝜗(𝑡) = 2𝜋𝑓𝑡 with the 
rotation frequency 𝑓 in Hz and time t in seconds as 
 

		𝑛(𝜏) = 	 (
sin 𝜏 	cos 𝜗
sin 𝜏 	sin 𝜗
cos 𝜏

1	,	 

 
based on the circle parameterization of the rotation: 
 

 
 
By comparison, we get 
 

𝛾(𝜗(𝑡)) = 	 sin%& (−sin 𝜏 	sin 𝜗)	, 
 

𝛽(𝜗(𝑡)) = 		 sin%& >
−sin 𝜏	cos 𝜗

√1 − sin' 𝜏 	sin' 𝜗	
@		. 

 
With the remaining relation cos 𝜏 = 	 cos 𝛽	cos 𝛾 = 	𝑛	 ∙ 	𝑒#, we can easily verify that the tilt angle 𝜏 
is indeed independent of 𝑡. The pitch and roll angles can also be approximated as 
 

𝛾B𝜗(𝑡)C ≈ 	−𝜏	 sin 𝜗 ,			𝛽B𝜗(𝑡)C ≈ 	−𝜏	 cos 𝜗, 
 
with an approximation error of less than 1% for tilt angles smaller than 20°. 
 
 

ez

n

sin � := r

cos �
nx = r cos �
ny = r sin � �
nz = cos �
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