Electronic Supplementary Information

Convenient tumor 3D spheroid arrays manufacturing via acoustic excited bubbles for in-situ drug screening

Jingjing Zheng,^{‡ab} Xuejia Hu,^{‡c} Xiaoqi Gao,^{ab} Yantong Liu,^{ab} Shukun Zhao,^{ab} Longfei Chen,^{ab} Guoqing He,^{ab} Jingwei Zhang, ^d Lei Wei, ^e and Yi Yang^{*ab}

^a School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano- Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.

^b Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China.

^c Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China.

^d Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.

^e School of Basic Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.

‡ These authors contributed equally: Jingjing Zheng, Xuejia Hu.

*Correspondence and requests for materials should be addressed to Y. Yang. (Email: <u>yangyiys@whu.edu.cn</u>)

This PDF file includes:

Fig. S1 to S4

Other Supplementary Materials for this manuscript include the following:

Movie S1: Acoustic wave turns on the process of cell aggregation from the dispersed state into spheres (MP4).

Movie S2: Bright and fluorescent fields after cell sphere agglomeration stabilization (MP4).

Figures

Fig. S1. (A) Bright-field image of bubble array. Scale bar is 500 μ m. (B) Bright-field image of a single acoustic bubble forming a cell spheroid. Scale bar is 50 μ m. (C) Formation of bright-field images of the cell spheroid. Scale bar is 250 μ m. (D) Fluorescence image of cell spheroid after curing. Scale bar is 300 μ m. (E) Changes in the volume of the hydrogel encapsulating the cells with time. Scale bar is 150 μ m.

Fig. S2. (A) Bidirectional gradient distribution of drug/dye reflected in the hydrogel area array. Scale bar is 600 μ m. (B) Concentration distribution in each channel. (C) Cellular activity after acoustic and light curing, stained with FDA/PI. Scale bar is 300 μ m. (D) Number of live and dead cells before and after acoustic and light effects.

Fig. S3. (A) Value-added of cells over time after the action of collected acoustic bubbles. Scale bar is 200 μ m. (B) OD450 values of acoustic-treated and non-acoustic-treated cells were measured with CCK-8. A linear fit was made to the OD450 curve over time, with means and variances from four independent groups.

Fig. S4. (A) Number of live-dead cells in the cell spheroids array at each concentration. (B) the live-dead cells of single cells at 7.2 mg mL⁻¹ and 18 mg mL⁻¹ concentrations, respectively. Scale bar is 900 μ m.