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1. Addition of sucrose to the DNA sample - Boger fluid 

To explore the effect of shear thinning, we prepare a Boger fluid, a fluid with elastic 
properties but without shear thinning. Figure S1 shows clearly that the added sucrose 
results in wave formation with a DNA concentration that would otherwise be insufficient. 

 

Fig. S1. Low DNA concentrations (50 µg/mL, C/C* = 0.43, λ DNA) without (a, c) and with (b, d) added sucrose 
(w/w %) in the quadratic array. (a) and (b) show snapshots or arrays (pillars removed by image processing, see 
materials and methods). (c) and (d) show the corresponding kymographs at the middlemost row (y direction) with the 
same horizontal spatial scale (x direction). The zero-shear viscosity of the sample with sucrose is approximately four 
times higher than that without (6.5 mPas and 1.9 mPas respectively, based on data from 1 and 2). The infinite-shear 
viscosity is however about 5.4× higher as the viscosity of DNA solutions have been shown to approach the solvent 
viscosity at very high shear rates 1. The spatial scales are identical for all images with the scale bar representing 200 
µm. 

 

2. Calculation of the overlap concentration and the ionic strength 

The overlap concentration 3 is given by  C* = 𝑀/[(4𝜋/3)𝑅!"𝑁#]. Here, M is the molecular 
weight of the DNA and 𝑁# is Avogadro’s number. C* is the concentration above which 
DNA molecules no longer behave like isolated, individual molecules. Together with the 
expression for the radius of the polymer below, we obtain an expression for C* that depends 
on the contour length, L, as C* ∝ 𝐿(%&"') ≈ 𝐿&).+, where n is the Flory exponent, n = 
0.5877 4. Fig. S2 shows the relationship of the overlap concentration with I and L. We 
illustrate the dependence of the overlap concentration on ionic strength and on molecular 
length in Fig. S2. 
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Fig. S2. The dependence of the overlap concentration, C*, on the ionic strength for λ DNA (a) and the number of base 
pairs of the DNA (b) at high salt (5× TE, 3% BME). Values are based on T = 22 °C and with a dye to base pair ratio of 
1:200. The buffer concentrations used for our work are indicated by the dashed vertical lines in (a) as 0.1× TE, 
0.13× TE, 0.2× TE, and 5× TE and 3% BME for A-D, respectively. The lengths of the DNA used for our work are 
highlighted using red dots in (b). 

The radius of gyration, 𝑅!, used in our calculations for C* is estimated using the worm-
like chain (WLC) model (also known as the Kratky-Porod model) as 𝑅! ≈ 𝑅,/√6, where 
𝑅, is the polymer end-end distance. To make the estimate as accurate as possible, 
electrostatic interactions and excluded volume effects are taken into account. 𝑅, is then 
described as 5: 

𝑅! ≈ #𝑤!""𝑙#&
$/&(𝑏𝑁)'	           [1] 

where 𝑤,-- is the effective width of the polymer, 𝑙. is the persistence length,	𝑏 = 2𝑙. is 
the Kuhn length and N is the number of Kuhn segments, 𝑁 = 𝐿/𝑏, where L is the contour 
length. For every dye molecule incorporated into the DNA strand, the contour length is 
increased by 0.51 nm 6. 𝑙. depends on ionic strength according to Odijk−Skolnick−Fixman 
(OSF) theory7-9 as: 

𝑙# = 𝑙#′ +
(.(*+,-

.
 nm	           [2] 

where 𝑙.′ = 50 nm is the bare persistence length and I is the ionic strength of the buffer. 
See below for how we calculated I for the different buffers used. 

The effective width for strongly charged chains, such as DNA, is given by 5: 

𝑤!"" =
$
/
/0.7704 +𝑙𝑜𝑔 (

'!""
#

+00$1%2/
)6	          [3]	

where 1/𝜅 is the Debye length, 𝜖 the dielectric constant of water, 𝜀) the permittivity of free 
space, 𝜈,-- is the effective DNA line charge density, 𝑘/ is Boltzman’s constant and 𝑇 the 
temperature. We use 𝜈,-- = −0.593 e/Å 10, where 𝑒 is the elementary charge. For a buffer 
containing 5× TE and 3% BME (I = 44 mM) at T = 22 °C we calculate 𝑤,-- = 4.6 nm and 
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for a buffer of 1× TE at the same T, 𝑤,-- = 43 nm which corresponds well with literature 
values from Iarko et al. 11. 

The Ionic strength, I, is calculated by summing the product of the concentration and 
squared charge of all ions in the solution: 

𝐼 = %
0
∑ 𝑧10𝑐12
13)    [4] 

where the one half is added to include both anions and cations and 𝑐1 is the concentration 
of an ionic species with the valence 𝑧1. We use the python library SymPy to compute I 
based on the detailed description by Iarko et al. 11. The equilibrium concentrations are 
calculated by solving a series of equations consisting of the equilibrium conditions based 
on the law of mass action. The activity coefficients of these conditions are calculated using 
the Davis equation. Because the activity coefficient depends on the ionic strength which in 
turn depends on the activity coefficients, the system of equations is iterated until a stable 
solution is found. The initial activity coefficients are set to 1. The percent error (100 × 
[calculated value – literature value] / literature value) is below 0.6% 12. 

3. Calculations of various dimensionless numbers 

Dimensionless numbers are used extensively in our description of our work. However, it 
is important to be aware that they vary across the devices that we use both in space and in 
time. The main purpose is to give an overall idea of the nominal properties of the fluids 
and what factors influence the behavior of the fluids in the devices.  

The Reynolds number describes the relationship between inertial effects and viscous 
effects, and is calculated according to R𝑒 ≡ 𝜌 ⋅ 𝑢 ⋅ 𝑤/𝜂4,where u is the mean fluid velocity 
in the pillar gaps of the array, 𝑤 is the gap width between the pillars, 𝜌 is the fluid density 
and 𝜂4 is the solvent viscosity. In our case we have Re << 1 and thus we can treat any 
inertial effects as negligible. 

The Deborah number, De, describes the ratio between the relaxation time of the system 
(here the DNA molecules) and the time scale of the applied forces (here the interaction 
time between the flowing molecules and individual pillars) 13. In the present work, we 
define 𝐷𝑒 ≡ (𝑢/𝐿..)𝜏5, where, 𝐿.. is the center-to-center distance between array rows 
and 𝜏5 is the Zimm relaxation time of the polymer. Note that 𝜏5 only gives approximate 
values of the relaxation time as it assumes the conditions to be ideal, the solution to be 
dilute and the solution to be in equilibrium. 

We define the elasticity number, 𝐸𝑙 = 𝐷𝑒/𝑅𝑒, which describes the ratio of elastic stress to 
inertial stress, with the Deborah number rather than the Weissenberg number since the 
shear rate in our system is not constant along the channel. 

We estimate the relaxation time, 𝜏6, using the Zimm relaxation time 14, 𝜏5177 = 𝑅!0/𝐷5 ≈
𝜂4	𝑏"𝑁"'/(𝑘/𝑇) ∝ 𝐿"' ∝ 𝐿%.9: where 𝜂4	 is the solvent viscosity, b is the Kuhn length, 𝑘/ 
is Boltzmann’s constant, T is temperature, N is the number of Kuhn segments and 𝜈 is the 
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Flory exponent. In the semidilute regime, the equilibrium relaxation time can be expressed 
in terms of the ratio between the concentration and the overlap concentration 15:  

𝜏 ∝ (𝐶/𝐶∗)(0&"')/("'&%)) ≈ (𝐶/𝐶∗))."%. 

The magnitudes of the dimensionless numbers presented in the main text should be 
considered lower bounds. Based on data from 16-19 we can estimate that the relaxation time 
and thus our estimates for De and El can be increased by at least a factor of 3 for C ≈ 4C* 
with concentrated λ DNA samples and a factor of 30 for the concentrated T4 DNA sample 
(C ≈ 9C*). The shear thinning has a two-fold decreasing effect on El as both the viscosity 
1,17 and the relaxation time 20 have been shown to reduce with higher shear rates. We would 
ultimately expect El to be significantly higher than reported in this work at high C and low 
flow velocities and slightly lower at high flow velocities. 

Table S1. Comparison of polymer weight and concentration between Pluronic® and λ DNA. 

Polymer 
Polymer weight 

(MDa) 
C (µg/mL) C (% w/w) 

Pluronic® F-127  

(poloxamer 407) 
0.012 10 0.001% 

lambda phage DNA 

(λ DNA, 48.5 kbp) 
31.5 400 0.04% 

 

Table S2. Weight and concentration ratios between λ DNA and Pluronic®. 

Weight Ratio(λ DNA/Pluronic®) Concentration Ratio  (λ DNA/Pluronic®) 

2522 39.98 

 

4. Rheology measurements 

The relaxation time of a solution of 400 µg/mL lambda phage DNA in 5× TE buffer was 
measured using a stress-controlled rheometer (Physica MCR 301, Anton Paar) with a 25 
mm cone plate geometry (CP 25-1) at 25 °C. An amplitude measurement was performed 
to find the linear viscoelastic (LVE) region, Fig. S3, and 30% of the maximum strain was 
chosen for subsequent frequency measurements. Three measurement series were taken and 
the means of G’ and G’’ used to find the cross-over frequency, at which the relaxation time 
t is equal to the inverse of the angular frequency. This gave a value for the relaxation time 
of 1.43 s, Fig. S4, S5. This relaxation time is within the same order of magnitude as the 
calculated Zimm relaxation time for the same solution (2.6 s, see Table 1 in the main text). 
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Fig. S3. Amplitude sweep to determine the linear viscoelastic (LVE) region. 

 

Fig. S4. Frequency sweeps (triplicate) for a solution of 400 µg/mL λ DNA in 5× TE buffer. 
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Fig. S5. The average of the three frequency sweeps from Fig. S4. The relaxation time is derived from the cross-over 
frequency where G’ = G’’ which is shown with the black, vertical dashed line. 

5. Movies 

Movie S1. (separate file). Low-magnification (2×) videographs comparing low flow 
velocity (u	 ≈ 102 µm/s, De ≈ 102) to high flow velocity (u ≈ 103 µm/s, De ≈ 103) of λ 
DNA solutions flowing through quadratic and disordered arrays. The Movie contains data 
that corresponds to Fig. 1.  

Movie S2. (separate file). Low-magnification (4×) fluorescence videographs where Δp is 
ramped from no flow to high flow rate (De ≈ 103) with a λ DNA solution of C = 400 µg/mL 
and high salt (I = 44 mM). Data for quadratic array. 

Movie S3. (separate file). High-magnification (20×) videographs of the three flow 
regimes S, C and W with a λ DNA solution of high C = 400 µg/mL and high salt 
(I = 31 mM). Note that the video playback rate is set the same for all flow velocities, so 
that the higher flow velocity video sections are slowed down. Data for quadratic array. The 
Movie contains data that corresponds to Fig. 2 and 3. 

Movie S4a. (separate file). Low-magnification (10×) fluorescence videographs of low 
C = 50 µg/mL and high C = 400 µg/mL λ DNA solution, at high flow rate (De ≈ 103) and 
high salt (I = 44 mM). Data for quadratic array. 

Movie S4b. (separate file). Low-magnification (10×) fluorescence videographs (where 
the pillars have been removed) of low C = 50 µg/mL and high C = 400 µg/mL λ DNA 
solution, at high flow rate (De ≈ 10") and high salt (I = 44 mM). Data for quadratic array. 

Movie S5. (separate file). Low-magnification (4×) fluorescence videograph sweeping the 
field of view across the entire array for a λ DNA solution of low salt (I = 1.2 mM) and 
C = 50 µg/mL, high flow rate (De ≈	103). Data for quadratic array. 
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Movie S6. (separate file). High-magnification (100×) videographs of low (De ≈ 26) and 
high flow rates (De	 ≈ 1.1 × 103) for a λ DNA solution of high C = 400 µg/mL and high 
salt (I = 44 mM). Note that the color represents the polarization emission ratio and the pixel 
value the total fluorescence intensity. Data for quadratic array. The Movie contains data 
that corresponds to Fig. 4. 

Movie S7. (separate file). Low-magnification (10×) videographs of low (De ≈ 26) and 
high (De	 ≈ 	1.1 × 10") flow rates for a λ DNA solution of high C = 400 µg/mL and high 
salt (I = 44 mM). The pillars have been removed with image processing and each pixel 
represents the average value of a dead zone. Note that the color represents the polarization 
emission ratio and the pixel value the total fluorescence intensity. Data for quadratic array. 
The Movie contains data that corresponds to Fig. 4. 
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