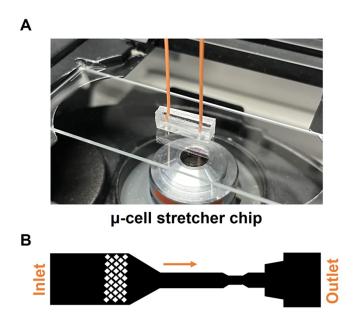
Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

Supplementary information for:

Highly efficient mRNA delivery with nonlinear microfluidic cell stretching for cellular engineering

Chan Kwon^{a,b} and Aram J. Chung*,a,b,c,d

^a Department of Bioengineering, Korea University, 02841 Seoul, Republic of Korea.


^b Interdisciplinary Program in Precision Public Health (PPH), Korea University, 02841 Seoul, Republic of Korea.

^c School of Biomedical Engineering, Korea University, 02841 Seoul, Republic of Korea.

^dMxT Biotech, 04785 Seoul, Republic of Korea.

^{*}Corresponding Author: E-mail: <u>ac467@korea.ac.kr</u>

Supplementary Figure

Figure S1. Platform layout. (A) Photograph of the delivery chip device at the microscopic stage. (B) Mock CAD design of the μ -cell stretcher.

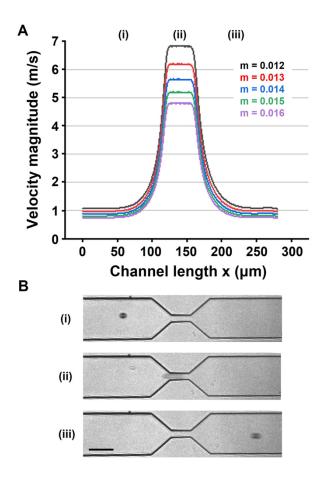


Figure S2. Velocity profile near the deformation region. (A) Velocity profiles for five different m (fluid consistency coefficient) values obtained using the finite element analysis (FEA) software package COMSOL Multiphysics 6.0. (B) High-speed microscope images showing 9.9 μ m microspheres flow inside a microchannel. The scale bar represents 50 μ m.

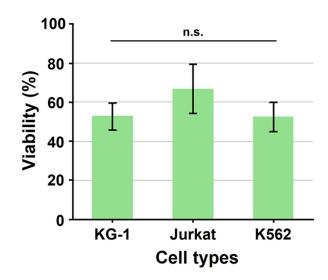
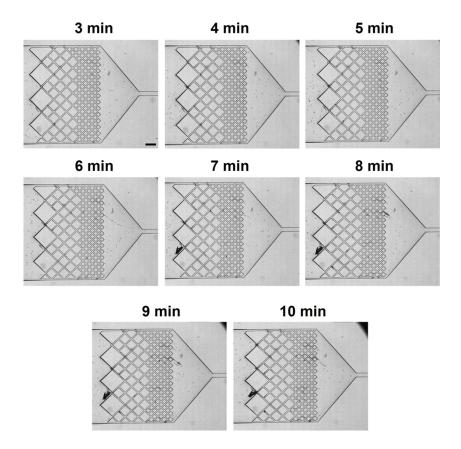



Figure S3. Viability of 3–5 kDa FITC-dextran delivery for three different immune cell lines. All the error bars indicate the mean \pm standard error of the mean (SEM) (N = 3). n.s. indicates no significant difference, calculated using one-way ANOVA with Tukey's method.

Figure S4. Microscope images near the inlet filter region. K562 cells with a concentration of 5×10^5 cells/mL were flowed, and images were taken at different time points. The scale bar represents 200 μ m.

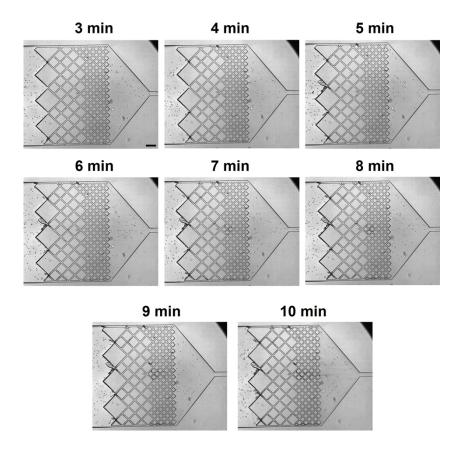


Figure S5. Microscope images near the inlet filter region. K562 cells with a concentration of 1×10^6 cells/mL were flowed, and images were taken at different time points. The scale bar represents 200 μ m.

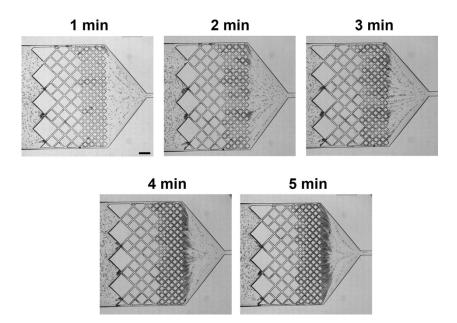


Figure S6. Microscope images near the inlet filter region. K562 cells with a concentration of 5×10^6 cells/mL were flowed, and images were taken at different time points. The scale bar represents 200 μ m.

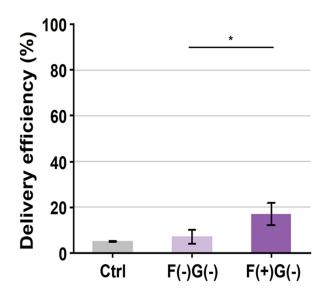


Figure S7. Delivery efficiency for 3–5 kDa FITC-dextran delivery into K562 cells with or without mechanical filters (F) and constriction gap (G). All the error bars indicate mean \pm standard error of the mean (SEM) (N = 3–4). * indicates a P-value below 0.05, calculated using one-way ANOVA with Tukey's method.

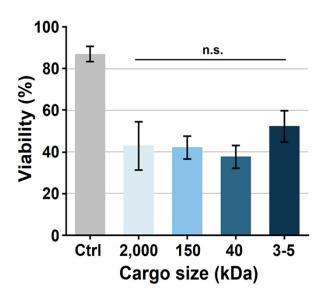


Figure S8. K562 cell viability for different FITC-dextran delivery sizes. All the error bars indicate the mean \pm standard error of the mean (SEM) (N = 3). n.s. indicates no significant difference, calculated using one-way ANOVA with Tukey's method.

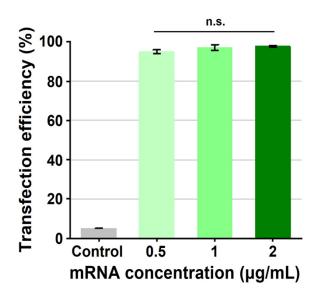


Figure S9. Transfection efficiency of K562 cells showing EGFP expression with different mRNA concentrations. All the error bars indicate the mean \pm standard error of the mean (SEM) (N=3). n.s. indicates no significant difference, calculated using one-way ANOVA with Tukey's method.

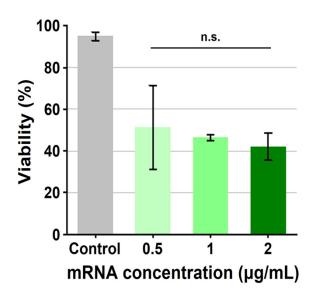
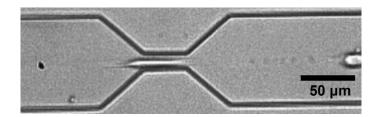
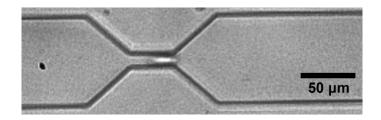




Figure S10. Cell viability of K562 cells tested under different mRNA concentrations. All the error bars indicate the mean \pm standard error of the mean (SEM) (N = 3). n.s. indicates no significant difference, calculated using one-way ANOVA with Tukey's method.

Movie S1. High-speed microscope video of K562 cell deformation in 0.85% methylcellulose solutions.

Movie S2. High-speed microscope video of K562 cell deformation in media.