Electronic Supplementary Material (ESI) for Lab on a Chip. This journal is © The Royal Society of Chemistry 2023

Supporting information

A label-free electrochemical DNA biosensor used a printed circuit board gold electrode (PCBGE) to detect SARS-CoV-2 without amplification

Nor Syafirah Zambry^a, Mohd Syafiq Awang^b, Khi Khim Beh^b, Hairul Hisham Hamzah^{c,*}, Yazmin Bustami^d, Godwin Attah Obande^{e,f}, Muhammad Fazli Khalid^a, Mehmet Ozsoz^{a,g}, Asrulnizam Abd Manaf^{b,*} and Ismail Aziah^{a,*}

^a Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
^b Collaborative Microelectronic Design Excellence Center (CEDEC),
Universiti Sains Malaysia, Sains@USM, Level 1, Block C, No.10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Pulau Pinang, Malaysia.
^c School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
^d School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Pulau Pinang, Malaysia.
^e Department of Medical Microbiology and Parasitology, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
^f Department of Microbiology, Faculty of Science, Federal University of Lafia, Lafia, Nasarawa state, Nigeria.
^gDepartment of Biomedical Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Turkey

> *Corresponding authors' e-mail addresses: <u>hishamhamzah@usm.my</u>, <u>eeasrulnizam@usm.my</u>; <u>aziahismail@usm.my</u>

Printed circuit board gold electrode (PCBGE)

Figure S1. Cyclic voltammograms (third cycle shown) of PCBEs in (A) 50 mM $K_4Fe(CN)_6$ solution and (B) 1 mM RuHex solution at a scan rate of 0.1 V s⁻¹ were obtained using two different reference electrodes (REs) coated with silver (Ag) and gold (Au), respectively.

Table S1.	The calcul	ated $i_{\rm pa}/i_{\rm pc}$ v	value for two	different	PCBEs v	with silver ((Ag) and	gold ((Au)
coated ref	ference elec	trodes, resp	pectively in a	a 50 mM I	K ₄ Fe(CN	$)_6$ solution	(Figure S	31A).	

Reference electrode (RE)	$i_{\rm pa}/i_{\rm pc}$	$E_{\rm peak}/{\rm mV}$	$E_{\rm mid}$ / mV
Gold (Au)	1.06 ± 0.02	186 ± 22	-4 ± 0.4
Silver (Ag)	1.26 ± 0.06	212 ± 12	153 ± 9

Table S2. The calculated i_{pa}/i_{pc} value for two different PCBEs with silver (Ag) and gold (Au) coated reference electrodes, respectively, in a 1 mM RuHex solution (Figure S1B).

Reference electrode (RE)	$i_{\rm pa}/i_{\rm pc}$	$E_{\rm peak}/{ m mV}$	$E_{\rm mid}$ /mV
Gold (Au)	1.20 ± 0.02	-71.6 ± 3.7	-105 ± 8
Silver (Ag)	1.30 ± 0.02	-72.4 ± 1.4	-299 ± 11

Figure S2. Suggested an equivalent circuit model utilized in convergently fitting the Nyquist plots from EIS measurements. Rs is the solution resistance, W is the Warburg constant, CPE is the constant phase element, and R_{ct} is the charge transfer resistance.

Table S3. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure 3B, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{\rm ct}/{ m k}\Omega$	Fitting error /	Convergence fit (x ²)	Convergence
		%		
Bare Au	0.15	2.24	0.075	Yes
Au-Thiolated ssDNA	0.58	1.02	0.053	Yes
MCH/Au-Thiolated	1.03	0.91	0.043	Yes
ssDNA				

Table S4. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure 4B, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{\rm ct}/{\rm k}\Omega$	Fitting error /	Convergence fit (x ²)	Convergence
		%		
DNA sensor	1.03	0.91	0.0426	Yes
DNA sensor + Target	3.06	3.84	0.2419	Yes
DNA (1µM)				

Figure S3. (A) Nyquist plots (fitting errors are shown in Table S5) and (B) charge-transfer resistance (R_{ct}) values for DNA sensor-based PCBGE at different incubation times of target ssDNA (from 2 to 30 min). Statistical analyses were performed using the Tukey test. Data points are the mean values obtained in 3 independent experiments ± SD, and *** denotes p (0.001 and (ns) not significant.

Incubation time (min)	$R_{\rm ct}/{ m k\Omega}$	Fitting error / %	Convergence fit (x ²)	Convergence
2	2.22	2.83	0.133	Yes
5	3.76	4.52	0.304	Yes
10	3.06	3.84	0.242	Yes
30	3.31	2.44	0.105	Yes

Table S5. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure S3, based on an equivalent model circuit proposed in Figure S2.

Table S6. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted
Nyquist plots are shown in Figure 6A, based on an equivalent model circuit proposed in Figure
S2.

Electrode	$R_{ m ct}/ m k\Omega$	Fitting error / %	Convergence fit (x ²)	Convergence
DNA sensor	1.03	0.91	0.0426	Yes
DNA sensor + Target DNA (1µM)	3.76	4.52	0.3041	Yes
DNA sensor + 1-Base Mismatch	1.11	0.91	0.0430	Yes

Table S7. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure 7A, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{\rm ct}/{\rm k}\Omega$	Fitting error / %	Convergence fit (x ²)	Convergence
DNA sensor	1.03	0.91	0.0426	Yes
1 µM	3.76	4.52	0.3041	Yes
3 µM	4.49	1.35	0.0230	Yes
5 μΜ	6.61	1.74	0.0044	Yes
8 μΜ	10.85	2.13	0.0582	Yes
15 µM	27.53	1.29	0.0322	Yes

Table S8. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure 7C, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{ m ct}$ / k Ω	Fitting error / %	Convergence fit (x^2)	Convergence
DNA sensor	1.03	0.91	0.0426	Yes
1 copy/µL	40.06	2.17	0.1262	Yes
10 copies/µL	70.19	3.58	0.2078	Yes
1000 copies/µL	82.56	2.91	0.1173	Yes
100000 copies/µL	166.25	2.83	0.1115	Yes

Figure S4. (A) Nyquist plots (fitting errors are shown in Table S9) for detection of synthetic RNA.

Table S9. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure S4, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{ m ct}/ m k\Omega$	Fitting error / %	Convergence fit (x ²)	Convergence
DNA sensor	0.879	1.356	0.064312	Yes
DNA sensor + Synthetic RNA (108 copies/µL)	13.59	1.60	0.0366	Yes

Table S10. R_{ct} values, fitting errors, convergence fit values, and convergence for the fitted Nyquist plots are shown in Figure 8A, based on an equivalent model circuit proposed in Figure S2.

Electrode	$R_{\rm ct}/{\rm k}\Omega$	Fitting error / %	Convergence fit (x ²)	Convergence
DNA sensor	0.879	1.356	0.064312	Yes
DNA sensor + Negative sample A	1.8989	0.59	0.023294	Yes
DNA sensor + Negative sample B	1.8546	0.419	0.010508	Yes
DNA sensor + Negative sample C	1.702	0.614	0.02576	Yes
DNA sensor + Positive sample A	4.1693	0.744	0.037141	Yes
DNA sensor + Positive sample B	4.0779	0.549	0.02026	Yes
DNA sensor + Positive sample C	4.9554	0.699	0.032741	Yes