Supporting Information

Two-dimensional benzo[1,2-*b*:4,5-*b*']difurans as donor building blocks for the formation of novel donor–acceptor copolymers

Carmen L. Gott-Betts,^a Alfred Burney-Allen,^a David L. Wheeler^a and Malika Jeffries-EL^{a*}

Table of Contents

Supplementary Synthesis	
NMR Spectra	6
Atomic Force Microscopy	
Cyclic Voltammetry	
Differential Scanning Calorimetry of P1-P4	
Thermogravimetric Analysis of P1-P4	
Average Device Data	
JV Curves	
GPC Chromatograms	

Supplementary Synthesis

1,4-diiodo-2,5-dimethoxybenzene (S1).¹ In a 500mL round bottom flask, a solution of H_5IO_6 (20.51g, 90mmol) and I_2 (45.69g, 180mmol) in CH₃OH (200mL) was stirred for 10 min before 1,4-dimethoxybenzene (20.72g, 150mmol) was added in one portion and heated to reflux overnight. The resulting suspension was cooled, filtered, and the solid washed with cold CH₃OH before being dissolved in CH₂Cl₂. The solution was then dried with MgSO₄, filtered, and the solvent evaporated to afford a white crystalline solid (52.64g, 90% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.18 (2H, s), δ 3.82 (6H, s).

1,4-Dimethoxy-2,5-bis[2-(trimethylsilyl)ethynyl]benzene (S2). In a dry round bottom flask attached to a condenser under nitrogen environment, **S1** (19.03g, 50mmol) was added along with Pd(PPh₃)₂Cl₂ (0.01 equiv.), CuI (0.02 equiv.), and PPh₃ (0.02 equiv.). The flask was purged and backfilled three times before adding deoxygenated THF/*i*-Pr₂NH (2:1) and TMSA (2.2eq) then stirred overnight at room temperature. The reaction mixture was then poured into ice and extracted three times with dichloromethane. The combined organic layers were then washed with saturated aqueous NH₄Cl, water, and brine. The organic layer was then dried with MgSO₄, evaporated, then purified using a silica plug (Hex: DCM (4:1)). The resulting solid was then recrystallized with ethanol to yield a light yellow-white crystalline solid (13.39g, 81% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.91 (2H, s), δ 3.83

(6H, s), δ 0.27 (18H, s).

1,4-diethynyl-2,5-dimethoxybenzene (1). In a 500mL round bottom flask, **S2** (13.25g, 40 mmol) was dissolved in a 2:1 mixture of dichloromethane and methanol. Then, four equivalence of K_2CO_3 was added to the flask in one portion. The reaction mixture was stirred overnight then filtered, poured into water, and extracted with dichloromethane three times. The combined organic layers were washed with water, brine, dried with MgSO₄, and solvent evaporated. The resulting solid was recrystallized using ethanol to yield a light yellow solid (7g, 94% yield). ¹H NMR (400 MHz, CDCl₃) δ 6.98 (2H, s), δ 3.85 (6H, s), δ 3.39 (2H, s).

2-(2-ethylhexyl)thiophene (S3). A solution of thiophene (1.91g, 22.7mmol) and dry THF was added to a in a dry round bottom flask under nitrogen. The solution was cooled to - 78°C and 10mL of *n*-BuLi solution (2.5 M in hexanes) was added dropwise. The solution was stirred at -78°C for one hour then quenched with 2-ethylhexyl bromide (4.83g, 25mmol). The reaction was brought to room temperature and stirred overnight. The reaction was then poured into ice, extracted with hexanes three times, washed with water, brine, then dried with MgSO₄. The solution was then removed via rotary evaporation, and the residue was purified by vacuum distillation to give the title compound. Colorless liquid

(2.81g, 63% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.11 (d, J = 6.3 Hz, 1H), 6.95 – 6.88 (m, 1H), 6.76 (d, J = 3.4 Hz, 1H), 2.76 (d, J = 6.8 Hz, 2H), 1.58 (m, 1H), 1.30 (m, 8H), 0.89 (t, J = 7.2 Hz, 6H).

2-(5-(2-ethylhexyl)thiophen-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (6a). A solution of **S3** (2.78g, 14.31mmol) in anhydrous THF was cooled to -78° C before n-butyl lithium (2.5 M in hexane, 1.2 equiv) was added dropwise. The reaction mixture was allowed to come to 0 °C and stirred for 1h at this temperature. The mixture was cooled again to -78° C and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.2 equiv) was added. The reaction mixture was allowed to come to room temperature overnight. The solvent was then removed under reduced pressure and the residue dissolved in CH₂Cl₂. The organic layer was then washed with water and brine. The solvent was removed in vacuo and the resulting product was used without further purification. Product was a clear oil (3.67g, 80%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J= 3.4 Hz, 1H), 6.84 (d, J= 3.4 Hz, 1H), 2.79 (d, J= 6.9 Hz, 2H), 1.64-1.56 (m, 1H), 1.37-1.24 (m, 20H), 0.88 (dd, J= 8.4, 6.4 Hz, 6H).

9-(bromomethyl)nonadecane (S4).² N-bromosuccinimide (1.5 equiv) was slowly added to a solution of 2-Octyldodecanol (10g, 33.5mmol) and triphenyl phosphine (2 equiv) at 0° C in DCM (200mL). The reaction was stirred overnight then poured into water and extracted with dichloromethane three times. The organic solution was then washed with

water, dried over MgSO₄ and the solvent evaporated. Product S4 was purified by flash chromatography in hexanes to afford colorless oil (11.25g, 93% yield). The NMR was consistent with previously reported values. ¹H NMR (400 MHz, CDCl₃) δ 3.44 (d, J = 4.8 Hz, 2H), 1.38 – 1.23 (m, 32H), 0.88 (t, J = 6.8 Hz, 6H).

2-(2-octyldodecyl)thiophene (S5). A solution of thiophene (1.91g, 22.7mmol) and dry THF was added to a in a dry round bottom flask under nitrogen. The solution was cooled to -78°C and 10mL of *n*-BuLi solution (2.5 M in hexanes) was added dropwise. The solution was stirred at -78°C for one hour then quenched with 9-(bromomethyl)nonadecane (25mmol). The reaction was brought to room temperature and then refluxed overnight. The reaction was then poured into ice, extracted with hexanes three times, washed with water, brine, then dried with MgSO₄. The solution was then removed via rotary evaporation, and the residue was purified by vacuum distillation to give the title compound. Colorless liquid (4.80g, 58%). ¹H NMR (400 MHz, CDCl₃) δ 7.12 (d, J=5.0 Hz, 1H), 6.93 (dd, J=4.9 Hz, 3.5 Hz, 1H), 6.78 (d, J=3.3 Hz, 1H), 2.79 (d, J=6.7 Hz, 2H), 1.65 (bs, 1H), 1.47 – 1.12 (m, 32 H), 0.92 (t, J=6.5 Hz, 6H).

4,4,5,5-tetramethyl-2-(5-(2-octyldodecyl)thiophen-2-yl)-1,3,2-dioxaborolane (6b). A solution of S5 (4.56g, 12.5mmol) in anhydrous THF was cooled to -78° C before *n*-butyl lithium (2.5 M in hexane, 1.2 equiv) was added dropwise. The reaction mixture was

allowed to come to 0°C and stirred for 1h at this temperature. The mixture was cooled again to -78°C and 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (1.2 equiv) was added. The reaction mixture was allowed to come to room temperature overnight. The solvent was then removed under reduced pressure and the residue dissolved in CH₂Cl₂. The organic layer was then washed with water and brine. The solvent was removed in vacuo and the resulting product was used without further purification. Product was a clear oil (4.78g, 78%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 3.4 Hz, 1H), 6.83 (d, J = 3.3 Hz, 1H), 2.78 (d, J = 6.6 Hz, 2H), 1.37 – 1.12 (m, 45H), 0.89 (m, 6H).

NMR Spectra

Figure 0.1 - ¹H NMR Compound S1

Figure 0.2 - ¹H NMR Compound 1

Figure 0.3 - ¹H NMR Compound 2

Figure 0.4 - ¹³C NMR Compound 2

Figure 0.5 - 1H NMR Compound 3

Figure 0.6 - ¹³C NMR Compound 3

Figure 0.7 - ¹H NMR Compound 4

Figure 0.8 - ¹³C NMR Compound 4

Figure 0.9 - ¹H NMR Compound 6A

Figure 0.10 - ¹H NMR Compound 6B

Figure 0.11 - ¹H NMR Compound 7A

Figure 0.12 - ¹³C NMR Compound 7A

Figure 0.13 - ¹H NMR Compound 7B

Figure 0.14 - ¹³C NMR Compound 7B

Figure 0.15 - ¹H NMR Compound 8A

Figure 0.16 - 1H NMR Compound 8B

Figure 0.17 - ¹H NMR Polymer P1

Figure 0.18 - ¹H NMR Polymer P2

Figure 0.19 - ¹H NMR Polymer P3

Figure 0.20 - ¹H NMR Polymer P4

Atomic Force Microscopy

Figure 0.1 - AFM Images Active Layers P1 - P4 at 5 and 10 microns

Cyclic Voltammetry

Figure 0.1 - CV Polymer 1

Figure 0.2 - CV Polymer 2

Figure 0.3 - CV Polymer 3

Figure 0.4 - CV Polymer 4

Differential Scanning Calorimetry of P1-P4

Figure 0.1 - DSC Polymer P1

Figure 0.2 - DSC Polymer P2

Figure 0.3 - DSC Polymer P3

Figure 0.4 - DSC Polymer P4

Thermogravimetric Analysis of P1-P4

Figure 0.1 - TGA Polymer P1

Figure 0.2 - TGA Polymer P2

Figure 0.3 - TGA Polymer P3

Figure 0.4 - TGA Polymer P3

Average Device Data

	Solution	Acceptor	Spin Coating speed [rpm]	Annealing Temp °C	D/A	J _{sc} [mA/cm ²]	V _{oc} [V]	FF	PCE [%]
	oDCB	PC ₇₁ BM	1000	100	1:2	5.25 (4.84 \pm 0.28)	0.70 (0.63 ± 0.07)	47.75 (45.11 ± 3.44)	1.78 (1.42 ± 0.30)
P3	oDCB	PC71BM	1000	100	1:3	4.82 (4.60 ± 0.19)	0.81 (0.81 ± 0.00)	58.88 (58.89 ± 1.10)	2.32 (2.22 ± 0.08)
	oDCB 1%CN	PC ₇₁ BM	1000	100	1:3	5.56 (5.21 ± 0.27)	0.83 (0.83 ± 0.00)	57.37 (56.15 ± 1.05)	2.67 (2.45 ± 0.13)
	oDCB	PC ₇₁ BM	1000	100	1:2	6.43 (6.09 ± 0.25)	0.70 (0.64 ± 0.13)	59.52 (53.47 ± 8.51)	2.70 (2.20 ± 0.65)
P4	oDCB	PC71BM	1000	100	1:3	6.18 (5.79 ± 0.34)	0.73 (0.72 ± 0.01)	64.86 (65.36 ± 0.90)	2.93 (2.75 ± 0.15)
	oDCB 1%CN	PC71BM	1000	100	1:3	5.85 (5.47 ± 0.40)	0.73 (0.73 ± 0.00)	59.76 (57.90 ± 2.35)	2.60 (2.33 ± 0.18)
P1	oDCB	PC71BM	1000	100	1:2	8.69 (8.47 ± 0.40)	0.57 (0.56 ± 0.01)	36.38 (34.77 ± 1.31)	1.81 (1.67 ± 0.10)
	oDCB	PC ₇₁ BM	1000	100	1:3	8.17	0.55	36.54	1.66

						$(7.33 \pm$	$(0.51 \pm$	(34.25	$(1.30 \pm$
						0.61)	0.10)	± 3.21)	0.35)
	oDCB					10.03	0.61	37.98	2.33
	29/ CN	PC71BM	1000	100	1:2	(8.80 ±	(0.60 ±	(37.19	(1.98 ±
	270 CN					0.79)	0.01)	± 1.03)	0.21)
	I					6.93	0.67	35.07	1.63
	oDCB	PC ₇₁ BM	1000	100	1:2	$(6.69\pm$	$(0.64 \pm$	(35.10	$(1.51 \pm$
						0.33)	0.02)	± 0.79)	0.09)
						4.95	0.58	37.10	1.07
P2	oDCB	PC ₇₁ BM	1000	100	1:3	$(5.04 \pm$	$(0.45 \pm$	(31.42	$(0.73 \pm$
						0.57)	0.10	± 3.85)	0.24)
	oDCB					7.40	0.67	35.11	1.75
	1% CN	PC ₇₁ BM	1000	100	1:2	(6.99±	(0.64 ±	(33.62	(1.53 ±
	1 /0 CIN					0.52)	0.04)	± 1.15)	0.15)

Table 0.1 - Average Device Data

Best average based on greater than equal to 8 devices.

JV Curves

Figure 0.1 - Highest Performing Devices Polymers P1-P4

Figure 0.2 - Polymer P1 Devices without Additives

Figure 0.3 - Polymer P1 Devices with 2% CN Aadditive

Figure 0.4 - Polymer P2 Devices without Additive

Figure 0.5 - Polymer P2 Devices with 1% CN Additive

Figure 0.6 - Polymer P3 Devices without Additives

Figure 0.7 - Polymer P3 Devices with 1% CN Additive

Figure 0.8 - Polymer P4 Devices without Additives

Figure 0.9 - Polymer P4 Devices with 1% CN Additive

<u>GPC Chromatograms</u>

Molecular Weight Data							
Peak No.	Мр	Mn	Mw	Mz	Mz+1	Μv	PDI
1	3340	4898	6246	8338	11042	5991	1.27521
2	1824	1769	1856	1938	2013	1844	1.04918
3	757	720	752	782	809	748	1.04444

PD

1.46954

Figure 0.1 - Polymer P1 GPC Chromatogram 80°C Chlorobenzene

Figure 0.2 - Polymer P2 GPC Chromatogram 80°C Chlorobenzene

Molecular Weight Data								
Peak No.	Мр		Mn	Mw	Mz	Mz+1	Mv	PD
1		18526	11453	17305	23749	29900	16392	1.51096

Figure 0.3 - Polymer P3 GPC Chromatogram 80°C Chlorobenzene

Molecular Weight Data													
Peak No.	r	Ир	Mn		Mw	Mz		Mz+1		Μv		PDI	
	1	16313	2005	54	29558		44103		61471	27	781		1.47392
	2	5747	536	52	5503		5639		5767	5	5482		1.0263
	3	3083	297	73	3059		3137		3209	(ii)	3046		1.02893
	4	1441	139	92	1422		1452		1479	1	418		1.02155
	5	379	36	52	379		395		411		376		1.04696

Figure 0.4 - Polymer P4 GPC Chromatogram 80°C Chlorobenzene

Standard Curve + Column Information

Standard info:

Polystyrene standard B from Agilent technologies (EASICAL PS-1 PL2010-0501)

Mp (g/mol) Ranges:

2,327,000

321,300

75,050

9,310

580

Calibration info:

- High Limit RT 12.6167
- Low Limit RT 22.8
- High Limit MW 2303462

Low Limit MW 577

K Calibration 14.1

References

¹ Yi, C.; Blum, C.; Lehmann, M.; Keller, S.; Liu, S.-X.; Frei, G.; Neels, A.; Hauser, J.; Schürch, S.; Decurtins, S. Versatile Strategy To Access Fully Functionalized Benzodifurans: Redox-Active Chromophores for the Construction of Extended π-Conjugated Materials. J. Org. Chem. 2010, 75 (10), 3350–3357.

² Scheuble, M.; Gross, Y. M.; Trefz, D.; Brinkmann, M.; López Navarrete, J. T.; Ruiz Delgado, M. C.; Ludwigs, S. Polythiophenes with Thiophene Side Chain Extensions: Convergent Syntheses and Investigation of Mesoscopic Order. *Macromolecules* 2015, 48 (19), 7049–7059. https://doi.org/10.1021/acs.macromol.5b01512.