## **Electronic Supplementary Information (ESI)**

## High content of hydrogenated pyridinic-N in SnO<sub>2</sub>/NGO heterogeneous material as an ultra high sensitive formaldehyde sensor

Jing Lu,\* Yajun Wang, Can Xu, Ying Zhang and Zijin Fu

a.School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi' an Key Laboratory of Green Manufacture of Ceramic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of

Education, Shaanxi University of Science and Technology, Xi' an, 710021, China.



Fig. S1 Optimal working temperature of SnO<sub>2</sub>, SG, SNG-1 and SNG-2 sensing materials at 10ppm formaldehyde concentration.



Fig. S2 The impedance test of SnO<sub>2</sub>, SG, SNG-1 and SNG-2 sensing materials.

| Table S1 | Relative | content of | different | forms  | ofoxyge  | 'n  |
|----------|----------|------------|-----------|--------|----------|-----|
| Table ST | Relative | content or | unnerent  | ionins | UI UAYgu | -11 |

|                  | Ov    | Sn-O  | Sn-O-C | C-0/C=0 |
|------------------|-------|-------|--------|---------|
| SnO <sub>2</sub> | 13.4  | 86.6  | —      | —       |
| SG               | 11.48 | 57.53 | 16.87  | 14.13   |
| SNG-1            | 15.86 | 57.07 | 18.48  | 8.59    |
| SNG-2            | 15.49 | 54.07 | 21.06  | 9.38    |

Table S2 Relative content of different forms of nitrogen

|       | pridinic-N | pyrrolic-N | hydrogenated<br>pyridinic-N | graphitic-N | pyridinic N-O- |
|-------|------------|------------|-----------------------------|-------------|----------------|
| SNG-1 | 18.1       | 10.8       | 55.9                        | _           | 15.2           |
| SNG-2 | -          | —          | 81.9                        | 18.1        | —              |

Table S3 The response-recovery time of SnO<sub>2</sub>, SG, SNG-1 and SNG-2 sensing material

|         | response time/recovery time      |       |       |       |       |                                  |        |        |        |        |
|---------|----------------------------------|-------|-------|-------|-------|----------------------------------|--------|--------|--------|--------|
|         | Formaldehyde concentration (ppb) |       |       |       |       | Formaldehyde concentration (ppm) |        |        |        | n)     |
| sample  | 100                              | 300   | 500   | 700   | 900   | 1                                | 3      | 5      | 7      | 9      |
| $SnO_2$ | _                                | _     | _     | _     | _     | 41/92                            | 55/49  | 66/59  | 41/84  | 49/82  |
| SG      | —                                | -     | _     | -     | _     | 34/91                            | 55/98  | 58/100 | 61/123 | 46/100 |
| SNG-1   | 64/105                           | 62/69 | 63/68 | 64/68 | 68/70 | 31/110                           | 54/100 | 74/94  | 64/95  | 56/93  |
| SNG-2   | 46/63                            | 41/51 | 48/60 | 41/61 | 49/68 | 38/90                            | 36/107 | 49/93  | 37/94  | 33/93  |

Table S4 Comparison of HCHO sensing performance of  $\mathsf{SnO}_2$  based sensors

| Material                                                             | Concentration(ppm<br>) | Response(Ra/Rg<br>) | Response time/recovery<br>time(s) | Practical detection<br>limit (ppb) | Ref       |
|----------------------------------------------------------------------|------------------------|---------------------|-----------------------------------|------------------------------------|-----------|
| SnO <sub>2</sub><br>nanofibers/nanosheets                            | 100                    | 57                  | 4.7/11.6                          | 500                                | 1         |
| SnO <sub>2</sub> microspheres                                        | 100                    | 38.3                | 38.26                             | 1000                               | 2         |
| mesoporous tubular<br>SnO <sub>2</sub>                               | 50                     | 20                  | Not report                        | 10                                 | 3         |
| SnO <sub>2</sub> /ZnO nanospheres                                    | 20                     | 38.2                | 12/24                             | 500                                | 4         |
| polyporous SnO <sub>2</sub> /ZnO<br>composites                       | 10                     | 2                   | Not report                        | 100                                | 5         |
| CuO/SnO <sub>2</sub> core-shell nanowires                            | 6                      | 1.2                 | 52/80                             | 1500                               | 6         |
| Ag-Zn <sub>2</sub> SnO <sub>4</sub> /SnO <sub>2</sub><br>nanospheres | 5                      | 10                  | 9/5                               | 250                                | 7         |
| SnO <sub>2</sub> /rGO<br>nanocomposites                              | 100                    | 138                 | Not report                        | 1000                               | 8         |
| SnO <sub>2</sub> nanofibers/GO                                       | 100                    | 32                  | 66/10                             | 500                                | 9         |
| SnO₂ nanosheets/GO                                                   | 100                    | 2275.7              | 81.3/33.7                         | 250                                | 10        |
| mesoporous spherical<br>SnO <sub>2</sub> /GO                         | 1                      | 4.9                 | 1/75                              | 1000                               | 11        |
| SnO <sub>2</sub> /NGO                                                | 5                      | 14.6                | 49/93                             | 100                                | This work |

## Notes and references

- [1] D. Wang, K. Wan, M. Zhang, H. Li, P. Wang, X. Wang and J. Yang, Constructing hierarchical SnO<sub>2</sub> nanofiber/nanosheets for efficient formaldehyde detection, *Sensors and Actuators B: Chemical*, 2019, 283, 714-723.
- [2] Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao and Y. Wang, Formaldehyde detection: SnO<sub>2</sub> microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity, *Sensors and Actuators B: Chemical*, 2017, 238, 264–273.

- [3] W. Zhang, X. Cheng, X. Zhang, Y. Xu, S. Gao, H. Zhao, and L. Huo, High selectivity to ppb-level HCHO sensor based on mesoporous tubular SnO<sub>2</sub> at low temperature, *Sensors and Actuators B: Chemical*, 2017, 247, 664– 672.
- [4] C. Lou, C. Yang, W. Zheng, X. Liu and J. Zhang, Atomic layer deposition of ZnO on SnO<sub>2</sub> nanospheres for enhanced formaldehyde detection, *Sensors and Actuators B: Chemical*, 2020, 129218.
- [5] J. Jiang, L. Shi, T. Xie, D. Wang and Y. Lin, Study on the gas-sensitive properties for formaldehyde based on SnO<sub>2</sub> -ZnO heterostructure in UV excitation, *Sensors and Actuators B: Chemical*, 2018, 254, 863–871.
- [6] L. Y. Zhu, K. Yuan, J. G. Yang, H. P. Ma,W. Tao, X. M. Ji and L. Hong Liang, Fabrication of heterostructured p-CuO/n-SnO<sub>2</sub> core-shell nanowires for enhanced sensitive and selective formaldehyde detection, *Sensors and Actuators B: Chemical*, 2019, 290, 233-241.
- [7] C. Lou, G. Lei, X. H. Liu, J. Xie, Z. S. Li, W. Zheng, J. Zhang, Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors, *Coordination Chemistry Reviews*, 2022, 452, 214180.
- [8] X. Rong, D. Chen, G. Qu, T. Li, R. Zhang, and J. Sun, Effects of graphene on the microstructures of SnO<sub>2</sub> @rGO nanocomposites and their formaldehyde-sensing performance, *Sensors and Actuators B: Chemical*, 2018, 269, 223-237.
- [9] D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, and J. Yang, Enhanced formaldehyde sensing properties of hollow SnO<sub>2</sub> nanofibers by graphene oxide, *Sensors and Actuators B: Chemical*, 2017, **250**, 533-542.
- [10] D. Wang, L. Tian, H. Li, K. Wan, X. Yu, P. Wang, and J. Yang, Mesoporous Ultrathin SnO<sub>2</sub> Nanosheets In-situ Modified by Graphene Oxide for Extraordinary Formaldehyde Detection at Low Temperature, ACS Applied Materials & Interfaces, 2019, 11, 12808-12818.
- [11] S. Chen, Y. Qiao, J. Huang, H. Yao, Y. Zhang, Y. Li, and W. Fan, One-pot synthesis of mesoporous spherical SnO<sub>2</sub>@graphene for high-sensitivity formaldehyde gas sensors, *RSC Advances*, 2016, 6(30), 25198-25202.