Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

Isotherm model	Linearized Equation	Parameter	Significance	References
Langmuir	$\frac{C_e}{q_e} = \frac{1}{q_m b} + \frac{C_e}{q_m}$	q _m	Maximum dye adsorption capacity (mg g ⁻¹)	Langmuir 1018 [1]
	Monolayer adsorption on homogeneous adsorbent surface	b	Constant related to affinity of binding sites (L mg ⁻¹)	& Dabrowski
	$R_L = \frac{1}{1 + bC_0}$	R _L	Dimensionless separation factor (R_L < 1 represents favourable adsorption)	2001[2]
Freundlich	$\log q_e = \log K_F + \frac{1}{n} \log C_e$	K _F	Adsorption capacity $(mg^{1-1/n} g^{-1} L^{-1})$	Ayawei <i>et al</i> . 2015
	Multilayer adsorption on heterogeneous adsorption surface	n	Adsorption intensity (1 <n<10 interaction)<="" represents="" strong="" td=""><td>[3]</td></n<10>	[3]
Temkin	$q_e = \frac{RT}{b} lnK_T + \frac{RT}{b} lnC_e$	K _T	Temkin constant (L mg ⁻¹)	
	Heat of adsorption decreases linearly with increase in adsorbent coverage The Temkin isotherm is valid for only an intermediate range of ion concentration	b	Constant related to heat of adsorption (J mol ⁻¹)	Ringot <i>et al.</i> 2007 [4] & Shahbeig <i>et</i> <i>al.</i> 2013 [5]
D-R Isotherm	The D-R isotherm expresses Gaussian energy distribution on	q _m	Maximum monolayer adsorption	Ayawei <i>et al</i> . 2015
	heterogeneous surface.	β	exponent that lies between 0 and 1	[3]

Supplementary Table S1: Linearized equations of the four adsorption isotherm models studied.

$lnq_e = lnq_m - \beta \varepsilon^2$			
$\varepsilon = RT ln \left(1 + \frac{1}{C_e} \right)$	E	Mean adsorption energy (J mol ⁻¹)	
$E = \frac{1}{\sqrt{2\beta}}$			

Supplementary Table S2: Linearized equations of the three adsorption kinetic models studied.

Kinetic model	Linearized Equation	Parameter	Significance	References
Pseudo first- order Kinetics	$log(q_e - q_t) = logq_e - \left(\frac{k_1}{2.303}t\right)$	q _e	Quantity of dye adsorbed at equilibrium (mg g ⁻¹)	Lagergren 1898 [8]
	Lagergren's equation describes	q _t	Quantity of dye adsorbed at time, t (mg g ⁻¹)	and Annadurai &
	adsorption in solid – liquid systems based on sorption capacity of solids	k ₁	Rate constant of pseudo first-order adsorption (min ⁻¹)	Krishnan 1997 [9]
Pseudo second- order Kinetics	$\frac{t}{-} = \frac{1}{-} + \frac{1}{-t}$	k ₂	Rate constant of pseudo second-order adsorption	
	$q_t k_2 q_e^2 q_e$		$(g mg^{-1} min^{-1})$	
	It predicts the behaviour of molecules over the whole range of adsorption process. Also useful for calculation of q_e	q _e	Equilibrium adsorption capacity (mg g ⁻¹)	Mckay & Ho 1999 [10]
Intra – particle diffusion	$q_t = k_i t^{0.5} + C$	k _i	Intra – particle diffusion rate constant (mg g ⁻¹ min ^{-0.5})	
	Weber – Morris model is important to describe the overall mechanism of adsorption. It assumes that if the plot of q_t versus $t^{0.5}$ is linear and passes through origin, then intra – particle diffusion is the sole rate – limiting step.	С	Intercept	Weber & Morris 1964 [11]

Supplementary Table S3: Linearized equations and their significance studied for evaluation of adsorption thermodynamics.

Linearized equation	Parameters	Significance
Change in free energy equation	ΔG	Change in free energy, ΔG is the measure of spontaneity and feasibility of the process. If the value of ΔG is negative, the process is spontaneous in nature.
$\Delta G = -RT lnK$	K	Equilibrium constant, k is obtained from the ratio of concentration of adsorbate on the surface of adsorbent to the concentration of adsorbate in the solution and is important for determining ΔG .
Van't Hoff equation	ΔΗ	Change in enthalpy, ΔH gives an indication of whether the process is exothermic or endothermic in nature.
$lnK = (\Delta S/R) - (\Delta H/RT)$	ΔS	Change in entropy, ΔS is the measure of increase or decrease of randomness of the adsorbate – adsorbent system.

References

- I. Langmuir, The adsorption of gases on plain surfaces of Glass, Mica and Platinum, J. Am. Chem. Soc. 40 (1918) 1361-1403.https://doi.org/10.1021/ja02242a004
- [2] A. Dabrowski, Adsorption from theory to practice, Adv. Colloid Interface Sci. 93 (2001) 135-224.<u>https://doi.org/10.1016/S0001-8686(00)00082-8</u>
- [3] N. Ayawei, A. T. Ekubo, D. Wankasi, E. D. Dikio, Adsorption of Congo red by Ni/Al-CO₃: Equilibrium, Thermodynamic and Kinetic Studies. Orient J. Chem. 31 (2015) 1307-1318.<u>http://dx.doi.org/10.13005/ojc/310307</u>
- [4] D. Ringot, B. Lerzy, K. Chaplain, J. P. Bonhoure, E. Auclair, and Y. Larondelle, In vitro biosorption of ochratoxin A on the yeast industry by-products: Comparison of isotherm models, Bioresour. Technol. 98 (2007) 1812-1821.<u>https://10.1016/j.biortech.2006.06.015</u>
- [5] H. Shahbeig, N. Bagheri, S. A. Ghorbanian, A. Hallajisani, and S. Poorkarimi, A new adsorption isotherm model of aqueous solutions on granular activated carbon, World J. Modell. Simullation. 9 (2013) 243-254.
- [6] O. Redlich and D. L. Peterson, A useful adsorption isotherm, J. Phys. Chem. 63 (1959) 1024-1024. <u>https://doi.org/10.1021/j150576a611</u>
- [7] F. C. Wu, B. L. Liu, K. T. Wu, and R. L. Tseng, A new linear form analysis of Redlich-Peterson isotherm equation for the adsorption of dyes, Chem. Eng. J. 162 (2010) 21-27.<u>https://doi.org/10.1016/j.cej.2010.03006</u>
- [8] S. Lagergren, About the Theory of So-Called Adsorption of Soluble Substances, *K*. Sven Vetenskapsakad Handl 24 (1898) 1-39.
- [9] G. Annadurai and M. R. V. Krishnan, Adsorption of acid dye from aqueous solution by chitin: Equilibrium studies. Indian J. Chem. Technol. 4, (1997) 217-222.
- [10] Y.S. Ho and G. McKay, Pseudo-second order model for sorption processes, Process Biochem 34 (1999) 451-465.<u>https://doi.org/10.1016/S0032-9592(98)00112-5</u>
- [11] W. J. Weber and J. C. Morris, Equilibria and capacities for adsorption on carbon, J Sanit Eng Div 90 (1964) 79-108.