Supporting Information

Silver Modified Copper Foam Electrodes for Enhanced

Reduction of CO₂ to C₂₊ products

Chong Wang¹, Chengdeng Wang¹, Zhihao Xiong¹, Jiashuai Wang¹, Wenyuan Zhang¹, Haofeng Shi¹, Donghua Wang¹, Yousong Gu¹, Zhiming Bai^{3*}, Yan Gao^{2*}, Xiaoqin Yan^{1*}

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, People's Republic of China. E-mail: xqyan@mater.ustb.edu.cn

- 2. Laboratory of Nanomaterials, National Center for Nanoscience and Technology, Beijing, 100190, People's Republic of China. E-mail: gaoyan@nanoctr.cn
- 3. School of Civil and Resource Engineering, University of Science and Technology

Beijing, Beijing 100083, P. R. China. E-mail: baizhiming2008@126.com

Figure S1 (a) and (b) SEM images of Cu porous.

Figure S2 TEM characterizations of Cu/CuO at different magnifications(a) (b), Cu/CuO-Ag (c) and SAED pattern (d).

Figure S3 SEM images of (a) (b) Cu/CuO-Ag1 and (c) (d) Cu/CuO-Ag5.

Figure S4 Presentative cyclic voltammograms within a non-faradaic potential range of (a) Cu foil , (b) Cu foam (c) Cu/CuO and(d)Cu/CuO-Ag at different scant rates from 10 to 70 mV s⁻¹ in Ar-saturated 0.1 M KHCO₃.

Figure S5 Chemical characterizations of Cu/CuO and Cu/CuO-Ag after 60-min electrolysis. (a) XRD patterns (b) XPS survey spectra, and (c) (d)high-resolution XPS spectra of Cu2p and Ag3d after 60-min CO₂ electroreduction at -2.0 V (vs. Ag/AgCl).

Figure S6 A photograph of the electrochemical peek cell used for CO_2 reduction experiments in this work. The custom-built cell is separated into two compartments by an anion exchange membrane. The working electrode (WE) is held in the airtight cathodic compartment, with the reference electrode (RE) placed nearby.

Figure S7 Representative chronoamperograms Cu/CuO-Ag cathodes over 60-min electrolysis at different potentials.

Figure S8 (a) LSV curves of Cu foil,Cu Porous and Cu/CuO-Ag. (b)FEs for each gaseous product (H₂, CO, C₂H₄) and for the main liquid product (HCOO⁻) over Cu foam in the potential range from -0.8 to -1.2 V (vs. RHE).

Figure S9 FEs for C₂₊ product of Cu/CuO-Ag1 Cu/CuO-Ag and Cu/CuO-Ag5 in the potential range from -0.7 to -1.2 V (vs. RHE).

Figure S10 (a), (b) SEM images of Ag foam. (c), (d) SEM images of Cu-Ag.

Figure S11 XRD patterns of Cu/CuO and Cu/CuO-Ag.

Figure S12 (a) LSV curves of Ag foam and Cu-Ag foam. FEs for representative products over (b) Ag foam, (c) Cu-Ag foam in the potential range of -0.8 to -1.2 V (vs. RHE). (d) FEs for C₂₊ product of Ag foam, Cu foam, Cu-Ag foam, Cu/CuO and Cu/CuO-Ag at -1.1V (vs. RHE).

Figure S13 The FE of C_2H_4 and total current density of the Cu/CuO-Ag catalyst over 20 hours at -1.1V (vs. RHE).

Figure S14 (a) (b) SEM images of Cu/CuO-Ag; (c-e) EDX images of overlap, Cu, and Ag of Cu/CuO-Ag.

Figure S15 Corresponding configurations of initial, transition and final states on the CO coverage of 2/9 ML and 3/9 ML. The colors are Cu in orange, C in grey, and O in red; FS, initial state; TS, transition state; FS, final state.

- · · · · · · · · · · · · · · · · · · ·			
catalyst	Capacitance mF	Roughness factor	
Cu foil	0.61±0.017	-	
Cu porous	4.69±0.134	76.89±2.196	
Cu/CuO	5.51±0.15	90.33±2.607	
Cu/CuO-Ag	5.18±0.146	86.56±2393	

Table S1 The roughness of Cu and CuAg catalysts estimated from double layer capacitance.

 Table S2 Adsorption energy of CO on Cu(111) surface with different coverage.

	· · · · · · · · · · · · · · · · · · ·		
CO* coverage(ML)	1/9 ML	2/9 ML	3/9 ML
Eads (eV per adsorbed CO*)	-0.88255352	-0.818094105	-0.756631863

Table S3 Recently reported highly-active catalysts for CO_2 reduction in aqueous solution.

Catalysts	Electrolyte	Main C ₂₊	Potential	Electrolytic	FE	Ref.
		Product	(V_{RHE})	cell	(%)	
Cu/CuO-Ag	0.1M KHCO ₃	C ₂ H ₄	-1.1V	H-cell	38.7%	This work
CuAg alloy	1 M KOH	C ₂ H ₅ OH	-1.1V	Flow cell	~ 25%	S 1
Cu(111)@Cu- THQ	0.1M KHCO ₃	C_2H_4	-1.4V	H-cell	42%	S2
Ag1–Cu1.1 NDs	0.1M KHCO ₃	C_2H_4	-1.1V	H-cell	~ 40%	S3
AuCu400	1MKOH	C ₂ H ₄	-1.3V	Flow cell	~ 37%	S4
Au ₁ Ag ₁ Cu ₆	0.1M KHCO ₃	C ₂ H ₅ OH	-0.8V	H-cell	37.5%	S5
Cu@Ag0.1nm	1M KOH	C ₂ H ₄	NA	Flow cell	27%	S6
Ag/Cu	0.1M KHCO ₃	C_2H_4	NA	H-cell	42%	S7
Cu ₄ Zn	0.1 M KHCO ₃	C ₂ H ₅ OH	-1.05V	H-cell	29.1%	S 8
Porous Cu	1 М КОН	C_2H_4	-0.68V	Flow cell	29 %	S9
Cu–Ag bimetallic	0.1 M KHCO ₃	C_2H_4 C_2H_6	-0.74V	H-cell	14%	S10
Au NBP–Cu JNC	0.1 M KHCO ₃	C2H6	-1.0V	H-cell	~40%	S11
Au0.02Cu ₂ O	0.1 M KHCO ₃	C_2H_4	-1.3V	H-cell	24.4%	S12
Ce-Cu NPs	1M KOH	C_2H_4	-0.68V	Flow cell	53%	S13

References

- T. T. H. Hoang, S. Verma, S. Ma, T. T. Fister, J. Timoshenko, A. I. Frenkel, P. J. A. Kenis and A. A. Gewirth, Nanoporous Copper Silver Alloys by Additive-Controlled Electrodeposition for the Selective Electroreduction of CO2 to Ethylene and Ethanol, *Journal of the American Chemical Society*, 2018, 140, 5791-5797.
- Z. H. Zhao, K. Zheng, N. Y. Huang, H. L. Zhu, J. R. Huang, P. Q. Liao and X. M. Chen, A Cu(111)@metal-organic framework as a tandem catalyst for highly selective CO₂ electroreduction to C₂H₄, *Chem Commun (Camb)*, 2021, 57, 12764-12767.
- 3. J. Huang, M. Mensi, E. Oveisi, V. Mantella and R. Buonsanti, Structural Sensitivities in Bimetallic Catalysts for Electrochemical CO₂ Reduction Revealed by Ag-Cu Nanodimers, *J Am Chem Soc*, 2019, **141**, 2490-2499.
- J.-H. Zhou, C.-Y. Yuan, Y.-L. Zheng, H.-J. Yin, K. Yuan, X.-C. Sun and Y.-W. Zhang, The site pair matching of a tandem Au/CuO–CuO nanocatalyst for promoting the selective electrolysis of CO₂ to C2 products, *RSC Advances*, 2021, 11, 38486-38494.
- 5. Y. Zhu, Z. Gao, Z. Zhang, T. Lin, Q. Zhang, H. Liu, L. Gu and W. Hu, Selectivity regulation of CO₂ electroreduction on asymmetric AuAgCu tandem heterostructures, *Nano Research*, 2022, DOI: 10.1007/s12274-022-4234-5.
- A. N. Kuhn, H. Zhao, U. O. Nwabara, X. Lu, M. Liu, Y. T. Pan, W. Zhu, P. J. A. Kenis and H. Yang, Engineering Silver-Enriched Copper Core-Shell Electrocatalysts to Enhance the Production of Ethylene and C2+ Chemicals from Carbon Dioxide at Low Cell Potentials, *Advanced Functional Materials*, 2021, **31**, 2101668.
- J. Wang, Z. Li, C. Dong, Y. Feng, J. Yang, H. Liu and X. Du, Silver/Copper Interface for Relay Electroreduction of Carbon Dioxide to Ethylene, *ACS Appl Mater Interfaces*, 2019, 11, 2763-2767.
- 8. D. Ren, B. S. H. Ang and B. S. Yeo, Tuning the Selectivity of Carbon Dioxide Electroreduction toward Ethanol on Oxide-Derived CuxZn Catalysts, *Acs Catalysis*, 2016, **6**, 8239-8247.
- 9. J. J. Lv, M. Jouny, W. Luc, W. Zhu, J. J. Zhu and F. Jiao, A Highly Porous Copper Electrocatalyst for Carbon Dioxide Reduction, *Adv Mater*, 2018, **30**, 1803111.
- 10. Z.-Y. Chang, S.-J. Huo, J.-M. He and J.-H. Fang, Facile synthesis of Cu–Ag bimetallic electrocatalyst with prior C2 products at lower overpotential for CO₂ electrochemical reduction, *Surfaces and Interfaces*, 2017, **6**, 116-121.
- H. Jia, Y. Yang, T. H. Chow, H. Zhang, X. Liu, J. Wang and C. y. Zhang, Symmetry-Broken Au–Cu Heterostructures and their Tandem Catalysis Process in Electrochemical CO₂ Reduction, *Advanced Functional Materials*, 2021, **31**, 2101255.
- X. Cao, G. Cao, M. Li, X. Zhu, J. Han, Q. Ge and H. Wang, Enhanced Ethylene Formation from Carbon Dioxide Reduction through Sequential Catalysis on Au Decorated Cubic Cu₂O Electrocatalyst, *European Journal of Inorganic*

Chemistry, 2021, **2021**, 2353-2364.

13. J. Shan, Y. Shi, H. Li, Z. Chen, c. Sun, Y. Shuai and Z. Wang, Effective CO₂ electroreduction toward C₂H₄ boosted by Ce-doped Cu nanoparticles, *Chemical Engineering Journal*, 2022, **433**, 133769.