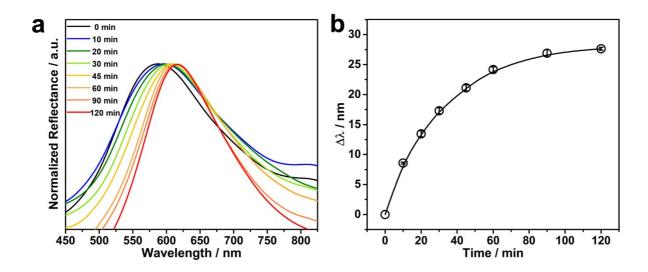
Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022


Electronic Supplementary Information

A ion-responsive photonic hydrogel sensor for portable visual detection and timely removal of lead ions in water

Zhuo Peng^a, HaiRong Yu*a,b, JingYa Wen^a, YinLin Wang^a, Ting Liang^{a,b} and Chang-Jing Cheng*a,b

^a College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China. *Email*: yuhr@swun.edu.cn, chengcj@swun.edu.cn

^b Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, China

Fig. S1 (a) Reflection spectra and (b) $\Delta\lambda$ of the PNBC photonic hydrogel sensor in response to 1.0 mM Pb²⁺ solution for different time.

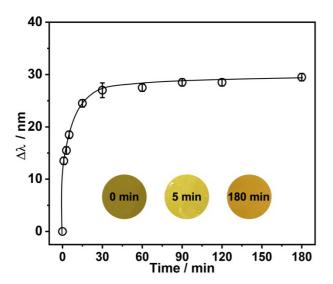


Fig. S2 The $\Delta\lambda$ of the 250 μ m-thick PNBC photonic hydrogel sensor in response to 5 mM Pb²⁺ solution for different time.

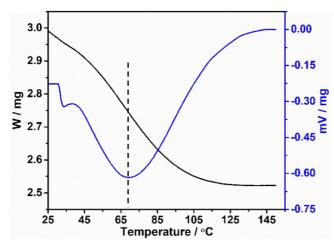
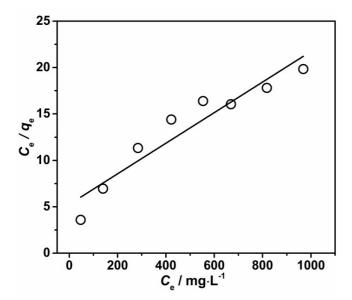



Fig. S3 TG-DSC curves of the PNBC photonic hydrogel.

Fig. S4 Fitting of the Langmuir isotherm model for Pb^{2+} adsorption onto the PNBC photonic hydrogel. The usage of the hydrogel is $14 \text{ g} \cdot L^{-1}$, the operating temperature is $25 \text{ }^{\circ}\text{C}$, and the pH value is 5.5.