Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Tunable mechanochromic luminescence via surface protonation of pyridylsubstituted imidazole crystals

Rikuto Kubota,^a Yanqiu Yuan,^a Ryohei Yoshida,^a Takashi Tachikawa^{*b,c} and Suguru Ito^{*a,d}

- ^a Department of Chemistry and Life Science, Graduate School of Engineering Science, Yokohama National University
 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
 *E-mail: suguru-ito@ynu.ac.jp
 ^b Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
 ^c Molecular Photoscience Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
 *E-mail: tachikawa@port.kobe-u.ac.jp
- ^d PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.

Table of contents

1. Differential scanning calorimetry (DSC) measurements	S2
2. Supplementary fluorescence spectra	S2
3. Powder X-ray diffraction (PXRD) patterns	S3
4. Theoretical calculations	S4
5. Supplementary absorption and fluorescence spectra	S6
6. Supplementary excitation spectra	S 7
7. Fluorescence microscopy	S 8
8. Reference	S9
NMR spectra	S10

1. Differential scanning calorimetry (DSC) measurements

Fig. S1 DSC thermograms for crystalline and ground samples of (a) **1** and (b) **2**. T_c and T_m values are noted near the corresponding peaks.

2. Supplementary fluorescence spectra

Fluorescence spectra for the stimuli-responsive luminescence of 2 and 2•HCl

Fig. S2 Fluorescence spectra of (a) crystalline and ground **2** and (b) crystalline **2**, crystalline **2**•**HCl**, exposed **2**•**HCl**, and ground **2**•**HCl** under UV (310 nm) irradiation.

Fluorescence spectra for crystalline 2, crystalline 2•HCl, and crushed 2•HCl

Fig. S3 (a) Photographs of **2**, **2**•**HCl**, and crushed **2**•**HCl** under UV (365 nm) irradiation. (b) Fluorescence spectra of **2**, **2**•**HCl**, and crushed **2**•**HCl** ($\lambda_{ex} = 310$ nm).

Fluorescence spectra of ground 1•HCl with 1 (0-2 equivalents)

Fig. S4 Fluorescence spectra of ground 1•HCl with 1 (0–2 equivalents) excited at 310 nm.

3. Powder X-ray diffraction (PXRD) patterns

PXRD patterns of 2 and 2•HCl

Fig. S5 (a) Simulated PXRD patterns of **2** calculated from the single-crystal X-ray diffraction structures prepared from CHCl₃/hexane. Experimental PXRD patterns for (b) crystalline, (c) ground, and (d) heated samples of **2** and (e) crystalline, (f) crushed, (g) ground, and (h) exposed to ethyl acetate samples of **2**•HCl.

PXRD patterns of 1•HCl

Fig. S6 PXRD patterns of (a) crystalline 1, (b) crystalline 1•HCl, (c) ground 1•HCl, and (d) exposed 1•HCl.

4. Theoretical calculations

Experimental absorption maxima and the results of DFT and TD-DFT calculations at the CAM-B3LYP/6-31G(d) level of theory are shown in Table S1. The HOMO and LUMO of 1, $1 \cdot H^+$, 2, and $2 \cdot H^+$ are shown in Fig. S7.

Compd.	Absorption	Calcd	Transition from	Oscillator	НОМО	LUMO	Dipole
	in CHCl ₃	absorption	HOMO to LUMO	strength	(eV)	(eV)	moment
	$\lambda_{abs} (nm)$	λ_{abs} (nm)					(D)
1	333	296.02	0.589	0.3874	-6.66	-0.16	4.64
$1 \cdot H^+$	428	432.04	0.696	0.7495	-9.39	-4.83	13.83
2	318	273.77	0.673	0.4344	-6.77	0.07	5.32
$2 \cdot H^+$	396	414.89	0.694	0.5817	-9.50	-4.73	13.68

Table S1 Experimental absorption maxima and calculated absorption properties.

Fig. S7 HOMO and LUMO of **1** (a), $1 \cdot H^+$ (b), **2** (c), and $2 \cdot H^+$ (c) calculated at the CAM-B3LYP/6-31G(d) level. The structures are drawn by VESTA.¹

5. Supplementary absorption and fluorescence spectra

Absorption and fluorescence spectra of 2 and 2•HCl in chloroform solution

Fig. S8 Absorption (dotted line) and fluorescence (solid line) spectra of **2** and **2**•**HCl** in chloroform solution. Excitation wavelengths are 319 nm and 397 nm for **2** and **2**•**HCl**, respectively.

Fluorescence spectra of 1 and 1-HCl (after exposing to HCl vapor for 30 min) in chloroform

Fig. S9 Fluorescence spectra of **1** and **1•HCl** after exposing to HCl vapor for 30min. Excitation wavelengths are 331 nm and 333 nm for **1** and **1•HCl**, respectively.

Absorption spectra for solid-state samples

Fig. S10 Absorption spectra of crystalline and ground samples of (a) 1 and 1•HCl and (b) 2 and 2•HCl.

6. Supplementary excitation spectra

Absorption and excitation spectra of 1, 1•HCl, 2, and 2•HCl in chloroform solution

Fig. S11 Absorption (dotted line) and fluorescence (solid line) spectra of (a) **1** and **1**•**HCl** and (b) **2** and **2**•**HCl**.

7. Fluorescence microscopy

Fluorescence decay profiles

Fig. S12 Fluorescence decay profiles recorded by spatially resolved fluorescence microscopy ($\lambda_{ex} = 405$ nm). (a) Crushed **1**•**HCI-B**, **1**•**HCI-G**, and **1**•**HCI-YG**. (b) Ground and exposed **1**•**HCI**. The black lines indicate multi-exponential curves fitted to the time profiles.

Fluorescence spectra recorded by fluorescence microscopy

Fig. S13 (a) Photographs and (b) fluorescence spectra of ground and exposed 1•HCl recorded by fluorescence microscopy ($\lambda_{ex} = 405$ nm). The square marks indicate the measured locations of fluorescence spectra and fluorescence decay profiles.

Reference

1) K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.

¹H NMR spectrum of **1** (500 MHz, CDCl₃, rt)

¹³C NMR spectrum of **1** (126 MHz, CDCl₃, rt)

¹H NMR spectrum of **2** (500 MHz, CDCl₃, rt)

¹³C NMR spectrum of **2** (126 MHz, CDCl₃, rt)

