\dagger Electronic supporting information

Dopant-free band edge shift in BiVO_{4} particles for enhanced oxygen evolution under simulated sunlight

Niqab Khan,*a Rogério Nunes Wolff, ${ }^{a}$ Hameed Ullah, ${ }^{\text {a }}$ Gustavo J. Chacón, ${ }^{\text {b }}$ Washington

${ }^{\text {a }}$ Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Programa de Pós-Graduação em Física (PPGFis), Federal University of Rio Grande do Sul (UFRGS), Campus do Vale, Agronomia, Porto Alegre-RS, Brazil.
${ }^{\text {b }}$ Laboratory of Molecular Catalysis (LAMOCA), Programa de Pós-Graduação em Química (PPQ), Federal University of Rio Grande do Sul (UFRGS), Campus do Vale, Agronomia, Porto Alegre-RS, Brazil.
${ }^{c}$ Laboratory of Artificial Photosynthesis (LAPA), Institute of Physics of São Carlos, University of São Paulo (USP), São Paulo, Brazil.

* sherdil.khan@ufrgs.br

Table S1. Crystalline (based on XRD analyses) and morphological (based on SEM images) properties of synthesized BiVO_{4} through [BMIm] and [M(MOE)Im] based ionic liquids.

Sample	Crystallite size (nm)	Crystallinity (100%)	Particle size (nm)
Pure BiVO_{4}	11	54	2725 ± 86
$\mathrm{Bi}:[\mathrm{V}-\mathrm{Bm}]$	18	86	221 ± 30
$\mathrm{Bi}:[\mathrm{V}-\mathrm{Me}]$	18	76	980 ± 62
[Bi-Bm]:[V-Bm]	19	$*$	1733 ± 72
[Bi-Me]:[V-Me]	19	$*$	3236 ± 47

*Additional peaks of $\mathrm{V}_{2} \mathrm{O}_{5}$ were observed which affect the crystallinity (\%) calculations; therefore, their crystallinity was not calculated.

Table S2. Raman shift and (V-O) bond length (Figure S4), surface area (Figure S4), bandgap (Figure 2c), V/B ratio (Figure 4) and oxygen evolution (Figure 5) of synthesized BiVO_{4} with different ionic liquids

Entry	Sample shift $\left(\mathrm{cm}^{-1}\right)$	Raman length (\AA)	V-O $\left(\mathrm{m}^{2} / \mathrm{g}\right)$	$\mathrm{S}_{\text {BET }}$ (eV)	Bandgap ratio	V / B $(\mu \mathrm{mol})$	
1	Bi:[V-Bm]	826.67	1.6961	11.43	2.41	0.51	28.6
2	$[\mathrm{Bi}-\mathrm{Bm}]:[\mathrm{V}-\mathrm{Bm}]$	828.24	1.6950	11.66	2.25	1.56	16.6
3	Bi:[V-Me]	824.90	1.6971	11.79	2.37	0.69	24.2
4	[Bi-Me]:[V-Me]	827.63	1.6955	11.10	2.29	1.72	3.2
5	Pure BiVO 4	828.91	1.6947	$*$	2.44	0.64	10.3

*Less than the instrument limit.

Figure S1. (a) XRD patterns and (b) UV -Vis diffused reflectance of [Bi-Bm]:V in which [BMIm] based IL anchored Bi was mixed with $\mathrm{NH}_{4} \mathrm{VO}_{3}$ to form BiVO_{4} and HT BiVO_{4} prepared by conventional hydrothermal process.

Figure S 1 displays the XRD patterns of $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ and $\mathrm{HT}-\mathrm{BiVO}_{4}$. For [$\mathrm{Bi}-\mathrm{Bm}$]:V in addition to BiVO_{4} ((JCPDS) Card No. 14-0688), peaks at $2 \theta \sim 20^{\circ}, 26^{\circ}$ and 31° were also observed which correspond to $\mathrm{V}_{2} \mathrm{O}_{5}$. Furthermore, as compared to [Bi-Bm]:[V$\mathrm{Bm}]$, and [Bi-Me]:[V-Me] (Figure 2), the relative peaks intensities of $\mathrm{V}_{2} \mathrm{O}_{5}$ was higher for $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$, indicating the formation of larger content of $\mathrm{V}_{2} \mathrm{O}_{5}$. Thus, anchoring IL with Bi side for the formation of BiVO_{4} strongly decreases the diffusibility of Bi with V for the complete formation of BiVO_{4}. However, this synthesis results in large O defects,
thereby a notable red-shift in the bandgap was clearly observed as compared to HTBiVO_{4} (Figure Slb) and pure BiVO_{4} (Figure 5).

Figure S2. SEM images of the synthesized samples with and without ionic liquid. (a) Bi:[V-Bm], (b) Bi:[V-Me], (c) [Bi-Bm]:[V-Bm], (d) [Bi-Me]:[V-Me] and (e) Pure BiVO_{4}.

Figure S2 compares the low magnification images of the prepared samples, the higher magnification SEM are presented in Figure 3. As compared to pure BiVO_{4}, the samples prepared by IL presents smooth particles.

Figure S3, SEM images of (a-b) [Bi-Bm]:V in which [BMIm] based IL anchored Bi was mixed with $\mathrm{NH}_{4} \mathrm{VO}_{3}$ to form BiVO_{4} and (c-d) $\mathrm{HT}-\mathrm{BiVO}_{4}$ prepared by conventional hydrothermal process.

Figure S3 (a-b) displays the SEM images of HT-BiVO4; showing the obtained morphology is agglomerated microparticles. IL based synthesized [$\mathrm{Bi}-\mathrm{Bm}$]:V resulted into a totally different morphology (Figure S2 (c,d)) than HT-BiVO 4 and also as compared to all other samples (Figure 3).

Figure S4. BET adsorption-desorption isotherms of the samples prepared with and without IL.

Figure S5. XPS spectra of the (a) Bi 4 f , (b) V 2 p and (c) O 1 s core levels of [Bi-Bm]:V and $\mathrm{HT}-\mathrm{BiVO}_{4}$ and (d) their respective VB spectra. A clear peak shift in Bi df, V2p and VB can be observed for $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ as compared to $\mathrm{HT}_{-1-\mathrm{BiVO}_{4}}$.

Figure S 5 displays XPS spectra of $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ and $\mathrm{HT}-\mathrm{BiVO}_{4}$. The peaks positions of HT- BiVO_{4} does not differ from pure BiVO_{4} (Figure 4). A clear blue-shift is observed for $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ as compared to $\mathrm{HT}^{2}-\mathrm{BiVO}_{4}$ for $\mathrm{Bi} 4 \mathrm{f}, \mathrm{V} 2 \mathrm{p}$ and VB spectra. These results also agree with Figure 5 where blue-shift was clearly observed for IL based syntheses as compared to pure BiVO_{4}. In addition, the O 1 s spectra of $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ (Figure S1c) is also similar to $[\mathrm{Bi}-\mathrm{Bm}]:[\mathrm{V}-\mathrm{Bm}]$ and $[\mathrm{Bi}-\mathrm{Me}]:[\mathrm{V}-\mathrm{Me}]$ which present an additional peak at $\mathrm{BE} \sim 533.2 \mathrm{eV}$ corresponding to chemisorbed oxygen species. Hence anchoring IL to Bi side improves the light abosrbption by upshifting the VB but with a drawback of low reactivity of Bi with V and accumulation of O species on BiVO_{4} surface.

Figure S6. Oxygen evolution of $[\mathrm{Bi}-\mathrm{Bm}]: V$ and $\mathrm{HT}-\mathrm{BiVO}_{4}$ for 3 h exposure to 300 W Xe radiations filtered with AM 1.5G.

Figure S 4 displays oxygen evolution of $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ and $\mathrm{HT}-\mathrm{BiVO}_{4}$ under simulated sunlight. Though $[\mathrm{Bi}-\mathrm{Bm}]: \mathrm{V}$ presented large absorption in the visible light, however due to accumulation of O species and presence of $\mathrm{V}_{2} \mathrm{O}_{5}$ could not perform better as compared to $\mathrm{HT}-\mathrm{BiVO}_{4}$ and pure BiVO_{4} (Figure 5a).

Figure S7. Mott-Schottky plots of BiVO_{4} (prepared without IL) and BMIm- BiVO_{4} prepared by BMIm based IL.

Figure S8. Chopped LSV curves of Bi:[V-Bm] with different layers i.e. 7L, 9L and 11L under 1 Sun illumination.

Figure S9: (a) Long time photochemical water oxidation activity of Bi:[V-Bm] at AM 1.5 illumination in 0.05 M of $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$. (b) $\mathrm{UV}-V$ is diffused reflectance of Bi:[V-Bm] before and after 12 h photocatalytic oxygen evolution test.

