Nano-structured nickel trithiocarbonate complex supported on g-

C₃N₄ as an efficient electrocatalyst for urea electro-oxidation

Debojit Ghosh, Rumeli Banerjee, Kirti, Samanka Narayan Bhaduri, Anup Mondal, Divesh N.

Srivastava, and Papu Biswas

Figure S1. FT-IR spectra of $g-C_3N_4$ and 35-Ni-ttc-d/g-C₃N₄. Inset shows the range between 850-675 cm⁻¹.

Figure S2. FT-IR spectra of ttc, Ni-ttc, and Ni-ttc-d.

Figure S3. Diffused reflectance spectroscopy (DRS) of (a) Ni-ttc, Ni-ttc-d, $g-C_3N_4$, and 35-Ni-ttc-d/g-C₃N₄ and (b) Ni-ttc-d in 200-1500 nm range.

Figure S4. Nitrogen adsorption/desorption isotherm of (a) 35-Ni-ttc-d/g-C₃N₄ and (b) g-C₃N₄.

Figure S5. XPS survey spectrum of (a) Ni-ttc and (b) Ni-ttc-d

Figure S6. XPS survey spectra of 35-Ni-ttc-d/g- C_3N_4

Figure S7. TEM-EDX elemental mapping of 35-Ni-ttc-d/g-C₃N₄.

Figure S8. CV recorded in N_2 -saturated 1 M KOH solution and 0.33 M urea at 50 mVs⁻¹ scan rate

Figure S9. Nyquist plots of g-C₃N₄ and Ni-ttc-d

Figure S10. Cyclic voltammograms of (a) 35-Ni-ttc-d/g-C₃N₄, (b) Ni-ttc-d, and (c) Ni-ttc in 1 M KOH solution at different scan rates. The plot of $\Delta j vs$. scan rates for (d) 35-Ni-ttc-d/g-C₃N₄, (e) Ni-ttc-d, and (f) Ni-ttc.

1	
Sample	BET Surface area $(m^2 g^{-1})$
35-Ni-ttc-d/g-C ₃ N ₄	4.335
g-C ₃ N ₄	4.726

Figure S11. Repeatability test of 35-Ni-ttc-d/g-C₃N₄ for UOR. **Table S1**. Multi point BET Surface area of 35-Ni-ttc-d/g-C₃N₄ and g-C₃N₄

Calculation for the electrochemical active surface area (ECSA) from Faradic region

The electrochemical surface area (ECSA) the catalysts were calculated using the relation as given below

$$ECSA = Q/(mq)$$

Where, Q represents the charge required for the anodic oxidation (Ni²⁺/Ni³⁺) in CV, m is the catalyst loading on the GCE surface (~0.4 mg cm⁻²) and q is the specific charge related to the formation of Ni(OH)₂ monolayer and it is 257 μ C cm⁻².^{1, 2}

Table S2. Integrated charge and ECSA calculated for Ni-ttc, Ni-ttc-d, 5-Ni-ttc-d/g-C $_3N_4$, 15-Ni-ttc-d/g-C $_3N_4$, 35-Ni-ttc-d/g-C $_3N_4$ and 50-Ni-ttc-d/g-C $_3N_4$.

Sample	Q (mC cm ⁻²)	$ECSA(m^{2}/g)$
Ni-ttc	0.066	0.6425
Ni-ttc-d	0.139	1.36
5-Ni-ttc-d/g-C ₃ N ₄	0.89	8.75
15-Ni-ttc-d/g-C ₃ N ₄	2.8	27.25
35-Ni-ttc-d/g-C ₃ N ₄	4.59	44.72
50-Ni-ttc-d/g-C ₃ N ₄	3.98	38.75

Table S3. Tafel slope calculated for different samples

Sample	Tafel Slope (mV dec ⁻¹)
Ni-ttc	280
Ni-ttc-d	200
5-Ni-ttc-d/g-C ₃ N ₄	157
15-Ni-ttc-d/g-C ₃ N ₄	81
35-Ni-ttc-d/g-C ₃ N ₄	50
50-Ni-ttc-d/g-C ₃ N ₄	51

Table S4. R_{ct} and R_s values for different catalysts

Catalyst	$R_{\rm ct}$ (ohm)	$R_{\rm s}$ (ohm)
5-Ni-ttc-d/g-C ₃ N ₄	120	32
15-Ni-ttc-d/g-C ₃ N ₄	100	31
35-Ni-ttc-d/g-C ₃ N ₄	60	25
50-Ni-ttc-d/g-C ₃ N ₄	79	31

Calculation for the electrochemical active surface area (ECSA) from non-faradic region $ECSA = C_{dl}/C_s$

where C_s is the specific capacitance of the material per unit area under identical electrolyte conditions and considered as 0.040 mF cm⁻² in 1 M KOH based on typical reported values

Table S5. ECSA calculated for 35-Ni-ttc-d/g-C₃N₄, Ni-ttc-d and Ni-ttc from non-Faradic region

Sample	Capacitance (mF cm ⁻²)	ECSA (cm ²)
Ni-ttc	2.38	4.165
Ni-ttc-d	2.82	4.935
35-Ni-ttc-d/g-C ₃ N ₄	6.74	11.795

References

1. R. K. Singh and A. Schechter, *Electrochim. Acta*, 2018, 278, 405-411.

 L. Wang, Z. Liu, S. Zhu, M. Shao, B. Yang, and J. G. Chen, ACS Appl. Mater. Interfaces, 2018, 10, 41338–41343.