Supplementary Information

Integration of Carbon Nanotubes and Azo-Coupled Redox-Active Polymers into Core-Shell Structured Cathodes with Favorable Lithium Storage

Xiaolan Ma,^a Yanying Dong,^a Chengen He,^{*b} Nan Jiang,^a and Yingkui Yang^{*a}

^a Hubei Engineering Technology Research Centre of Energy Polymer Materials, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China E. mail: whyang@mail.seyae.edu.an

E-mail: <u>ykyang@mail.scuec.edu.cn</u>

^b State Key Laboratory Cultivation Base for New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China E-mail: cehe@wtu.edu.cn

Theoretical capacity (C_{th} , mAh g⁻¹) of NHP moieties

The $C_{\rm th}$ was calculated on the basis of the literature method reported elsewhere [*Adv. Mater.* 2019, 31, 1901478]. The equation can be expressed as $C_{\rm th} = F/(3.6 \times M_{\rm w})$, where *F* is the Faraday constant (*ca.* 96485 C mol⁻¹) which equals to $e \times N_{\rm A}$ (*e*, the charge of electron, 1.60217662 × 10⁻¹⁹ Coulombs; $N_{\rm A}$, the Avogadro constant, 6.022141 × 10²³ per mole). $M_{\rm w}$ is the equivalent molecular weight of organic active materials, and defined as molecular weights of the repeating unit cell divided with the number of electrons (*n*) involved. As shown in Scheme **S1**, the molecular weight of the repeating *p*-phenylenediamine ($M_{\rm A}$) and tris(4-aminophenyl) amine ($M_{\rm B}$) units in NHP are 104, and 284, respectively. Based on the equimolar reaction between amino groups from *p*-phenylenediamine and tris(4-aminophenyl) amine monomers, the number of $M_{\rm A}$ and $M_{\rm B}$ units is 3 and 2 in the repeating NHP unit cell, respectively. The molecular weight of a unit cell is thus calculated to be $M_{\rm unit cell} = 3 \times M_{\rm A} + 2 \times M_{\rm B} = 3 \times 104 + 2 \times 284 = 880$. Furthermore, in such a unit cell, the number of electrons involved is 8 (including six azo groups and two tertiary amine sites). Accordingly, $M_{\rm w}$ is 110 by using the equation of $M_{\rm w} = M_{\rm unit cell}/n$ (880/8). As a result, the $C_{\rm th}$ is about 243.6 mAh g⁻¹ using the above equation.

Scheme S1 Chemical structures of M_A and M_B units in the NHP moiety.

Fig. S1 Typical TEM image of bare CNTs

Fig. S2 High-resolution N1s XPS spectrum of NHP moieties.

Fig. S3 CV cures of (a) NHP, (b) NHP@CNT-1, and (c) NHP@CNT-3 cathodes measured at 0.5 mV s⁻¹ in the first three cycles; (d) stable CV profiles of NHP and NHP@CNTs cathodes at 0.5 mV s⁻¹ in the third cycle.

Fig. S4 Charge/discharge voltage profiles of (a) NHP, (b) NHP@CNT-1, and (c) NHP@CNT-3 cathodes measured at 0.05 A g^{-1} in the first three cycles; (d) stable charge/discharge voltage profiles of NHP and NHP@CNTs cathodes at 0.05 A g^{-1} in the third cycle.

Sample	N (wt%)	C (wt%)	H (wt%)
Pure NHP	15.7	64.9	4.0
NHP@CNT-1	13.0	67.8	3.6
NHP@CNT-2	11.5	75.3	3.4
NHP@CNT-3	8.3	78.9	2.5
Pure CNTs	0.03	97.6	0.01

Table S1. Elemental contents of NHP and NHP@CNTs obtained from elemental analysis