Electronic Supplementary Information (ESI)

Modeling ionization quenching in organic scintillators

T. A. Laplace¹, B. L. Goldblum^{1,2}, J. A. Brown¹, G. LeBlanc¹, T. Li¹, J. J. Manfredi¹, and Erik Brubaker³

¹Department of Nuclear Engineering, University of California, Berkeley, CA 94720 USA.

²Nuclear Science Division at Lawrence Berkeley National Laboratory, Berkeley, CA, 94720 USA.

³Sandia National Laboratories, Livermore, CA, 94550 USA.

1 Proton light yield model performance

Table S1. Model goodness-of-fit for proton light yield data with no parameter constraints. The values correspond to the median χ^2 statistic from the Monte Carlo distribution divided by the number of degrees of freedom. The uncertainty is given by the median absolute deviation.

Scintillator	Birks	Chou	Hong et al.	Yoshida et al.	Voltz et al.
EJ-204	$(11234 \pm 1510)/31$	$(1878 \pm 674)/30$	$(1851 \pm 840)/29$	$(1270 \pm 694)/28$	$(1411 \pm 704)/28$
EJ-309	$(37064 \pm 7857)/46$	$(2149 \pm 1660)/45$	$(2369 \pm 1660)/44$	$(1863 \pm 1562)/43$	$(2362 \pm 1453)/43$
EJ-276	$(1976 \pm 525)/21$	$(129 \pm 42)/20$	$(463 \pm 145)/19$	$(93 \pm 25)/18$	$(95 \pm 18)/18$
Organic glass	$(6708 \pm 1714)/52$	$(740 \pm 205)/51$	$(428 \pm 174)/50$	$(342 \pm 151)/49$	$(376 \pm 143)/49$

Figure S1. (a) Specific luminescence models applied to EJ-309 proton light yield data. (b) Standard deviation of model fits to the measured data.

Figure S2. (a) Specific luminescence models applied to EJ-276 proton light yield data. (b) Standard deviation of model fits to the measured data.

Figure S3. (a) Specific luminescence models applied to the organic glass proton light yield data. (b) Standard deviation of model fits to the measured data.

2 EJ-204 proton light yield model parameters and covariance

Model	S or S_{ρ}	S _n	kB or kB_e	kB_n	С
	(rel. 477 keV e ⁻)	(rel. 477 keV e ⁻)	(mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.51	_	13.1	_	_
Chou	1.86	_	5.50	_	7.93
Hong et al.	2.51	2.51	9.64	3163	_
Yoshida et al.	2.14	2.47	7.61	284	6.12
		() = 1 = 1			

Table S2. EJ-204 proton light yield model parameters.

S (rel. 477 keV e ⁻)	T_0 (keV)	B_s (mg/cm ² /MeV)	R _d	$B_t \text{ (mg/cm}^2/\text{MeV)}$				
1.79	7.40	7.93	0.409	1.74				
(b) Voltz et al.								

	S		kB					S	kB	С
<u> </u>	2.09e - 6	3 ($\frac{1}{4e-5}$				S	1.62e - 2	0.104	-1.61e - 3
kB	3.04e - 5	9.0	10e - 2				kВ	0.104	0.748	-0.140
	(a) Bir	ks					С	-1.61e-3	-0.140	0.439
	(u) Di	110						(b) Chou	
			S.	S	1	kB.		kB.,		
		S.	4.08e -	5 2.266	$\frac{n}{2} - 10 = 2$.76e - 4	1	$\frac{12}{151e-2}$		
		S_n	2.26e – 1	10 1.09e	z - 12 = 3.0	68e - 10	_	2.44e — 6		
	k	\mathbf{B}_{a}	2.76e —	4 3.686	e - 10	0.349		-319		
	k	B_n	1.51e —	2 -2.44	4e — 6	-319		3.86e5		
	(c) Hong et al.									
					U U					
			6	<u> </u>	1.0	1.	<u></u>	0		
		0.1	S_e	S_n	KB_e	<u> </u>	B_n		<u> </u>	
	S_e	3.1	4e - 2	2.26e	3 0.20		5.4	-6.98e - 2		
	S_n	2.2	20e - 3	3.00e - 1	2 8.240	-3 -2	.90	2.11e - 2		
	кD _e ЪР		12 /	0.24e	02 5	7 7 <u>4</u> 5 20	2.5 004	-0.040		
	C	_6	13.4 $08_{0} = 2$	-2.90 -2.11 <i>e</i>	2 -0.64	3 3.4 46 —1	22	1 00		
		0.	700 2	(d) V	2 0.0- Voshida et a	1	.55	1.07		
				(u) 1	osinda et a	1.				
			S	T_0	B_s	R _d		B_t		
	S	1.	44e – 2	0.315	9.53e - 2	4.94e -	-4	1.17e - 2		
	T_0		0.315	18.8	-2.47	-0.18	6	-0.293		
	B_s	9.	53e – 2	2.47	3.83	0.143	3	0.474		
	R_d	4.	94e — 4	-0.186	0.143	8.32e -	-3	2.52e - 2		
	B_t	1.	17e - 2	-0.293	0.474	2.52e -	-2	8.68e - 2		
				(e)	Voltz et al.					

Table S3. EJ-204 proton light yield model parameter covariance matrices.

3 EJ-309 proton light yield model parameters and covariance

Model	S or S _e	S_n	kB or kB_e	kB_n	С
	(rel. 477 keV e ⁻)	(rel. 477 keV e ⁻)	(mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.51	_	10.4	_	_
Chou	1.94	_	4.55	_	6.91
Hong et al.	2.17	2.50	4.38	4403	_
Yoshida et al.	1.98	2.42	4.89	168	6.13
			. 1 1		

Table S4. EJ-309 proton light yield model parameters.

(b) Voltz et al.								
1.86	2.54	10.9	0.54	1.90				
S (rel. 477 keV e ⁻)	T_0 (keV)	B_s (mg/cm ² /MeV)	R_d	$B_t \text{ (mg/cm^2/MeV)}$				

											1	C	1.D	C
	S	5	kB							0		<u> </u>	<u>КВ</u>	
S	1.006	e — 3	5.44e	-3					1	S	2.4	3e - 2	0.165	-8.37e - 4
kВ	5.446	e — 3	0.27	9					I	kВ		165	1.25	-0.170
	(;	a) Birk	S							C	-8.3	37e - 4	-0.170	0.534
												(b) Chou	
				S	e	S _n		kB	e	k	kB_n			
			S_e	3.53	e-2	4.28e	-3	0.25	58	_	26.3			
			S_n	4.28	e – 3	1.06e	-2	3.55e	-2	—	5.87			
			kB_e	0.2	258	3.55e	-2	2.3	5		629			
			kB_n	-2	6.3	-5.8	87	-62	29	5.3	39e5			
				•	(c) Ho	ng et al	1.						
				-			1 0		1.0					
			2	_e	S_1	1	<u>КВ</u> е	2	KB_n	4	0.7	<u>,</u>		
		S_e	2.38	e-2	1.406	2-2	0.16)J	-1./	4	-2./4	e - 3		
		S_n	1.40	e - 2	0.866	2 - 2	0.10	-	-28.	4	8.23	e - 2		
		КВ _е	0.	163	0.1		1.2:	5	-16.	2	-0.	162		
		кВ _n			-28	5.4	-16	.2 :	5./9e	:4 -	-1	65		
			-2.7	4 <i>e</i> — 3	8.236	$\frac{2}{2}$	-0.1	62	-165	5	0.9	00		
					(d) Yosh	iida et a	al.						
			5	5	T_0		B_s		R _d		B_t			
		S	7.98	e — 3	1.93e -	-2	0.265	3.5	3e —	4	5.82e	-3		
		T_0	1.93	e - 2	26.2	2	-4.90	_	0.164	1	-0.3	78		
		B_s	0.2	265	-4.9	0	22.0	0	.226		0.63	38		
		R_d	3.53	e−4	-0.16	54	0.226	8.7	′бе —	3	2.10e	-2		
		B_t	5.82	<i>e</i> −3	-0.32	78	0.638	2.1	0e —	2	5.73e	-2		
					(e) Vol	tz et al	l .						

Table S5. EJ-309 proton light yield model parameter covariance matrices.

4 EJ-276 proton light yield model parameters and covariance

Model	S or S _e	S_n	kB or kB_e	kB_n	С
	(rel. 477 keV e ⁻)	(rel. 477 keV e ⁻)	(mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.51	_	17.5	_	_
Chou	2.43	_	13.3	_	9.55
Hong et al.	2.51	2.51	12.5	5286	_
Yoshida et al.	2.46	2.51	13.6	4.18	8.95
		() = 1 = 1			

Table S6. EJ-276 proton light yield model parameters.

S (rel. 477 keV e ⁻)	T_0 (keV)	$B_s \text{ (mg/cm}^2/\text{MeV)}$	R _d	$B_t \text{ (mg/cm}^2/\text{MeV)}$				
1.76	8.15	7.67	0.230	1.29				
(b) Voltz et al.								

						-		1		
	S		kB			-		S	kB	С
5	3 190 -	- 5	$\frac{1}{353e-4}$				S	1.90 <i>e</i> − 2	2 0.165	2.11e - 2
kB	3 53e -	-4	0 227				kB	0.165	1.72	-0.265
	(2)	Birks	0.227			-	С	2.11e - 2	2 -0.265	1.97
	(a)	DIIKS							(b) Chou	
		-	S		S	kB		kB		
		<u> </u>	281e -	-16 -22	$\frac{0_n}{1_{\ell} - 13}$	$\frac{KD_e}{2.12e - 1^2}$	1 3	$\frac{KD_n}{65e-7}$		
		S S	-2.21e	-13 2.6	7e - 4	131e - 3	1 0	-150		
		kB	2.210 2.12 e –	-11 13	1e - 3	1.510 5		-1283		
		kB_e	3 65e -	-7 -	1 50	-1283		1 78e6		
		<u>n</u>	0.000	<u>،</u> (د) ا	Hong et al	1200		11/000		
					liong et al.					
			S_e	S_n	kB _e	k.	B_n	С		
	2	S_e	1.25e - 2	1.45e - 4	0.11	0 -0.	.132	9.49e —	3	
	5	S_n	1.45 <i>e</i> – 4	2.44e - 3	-7.57e	-5 -0.	.629	7.18e —	3	
	k	B_e	0.110	-7.57e - 5	1.26	5 1.	88	-0.392		
	k	B_n	-0.32	-0.629	1.88	3 9	63	-14.0		
		C 9	9.49e — 3	7.18e - 3	-0.39	92 —1	4.0	2.10		
				(d) Ye	oshida et a	1.				
	_		S	To	В	R,		B.	_	
	_	S	$\frac{0}{1.01e-2}$	0 149	$\frac{D_s}{6.89e-2}$	$\frac{108e}{2}$	- 3	$\frac{D_t}{1.14e-2}$	_	
		T_{α}	0 149	6 73	0.654	1 96e -	-3	0 112		
		$\stackrel{1}{B}_{\cdot}$	6.89e - 2	0.654	0.875	2.80e -	-2	0.180		
		R_{J}	1.08e - 3	1.96e - 3	2.80e - 2	2 1.63e -	-3	8.84e - 3		
		B_{\star}	1.14e - 2	0.112	0.180	8.84e -	-3	5.32e - 2		
	_	L		(e)	Voltz et al.		-		_	

Table S7. EJ-276 proton light yield model parameter covariance matrices.

5 Organic glass proton light yield model parameters and covariance

Model	S or S _e	S _n	kB or kB _e	kB _n	С
	(rel. 477 keV e ⁻)	(rel. 477 keV e ⁻)	(mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.44	_	9.83	_	_
Chou	2.14	_	6.69	_	4.24
Hong et al.	2.29	2.51	7.88	1058	_
Yoshida et al.	2.19	2.43	7.15	190	2.90
		() = 1 = 1			

Table S8. Organic glass proton light yield model parameters.

<i>S</i> (rel. 477 keV e ⁻)	T_0 (keV)	B_s (mg/cm ² /MeV)	R_d	$B_t \text{ (mg/cm^2/MeV)}$				
2.05	13.2	8.91	0.453	1.73				
(b) Voltz et al.								

	S	kI	3					S		kB	С
<u> </u>	271a - 3	1 284	$\frac{1}{2}$				S	2.80e	-3	2.59e - 2	-2.45e - 2
k R	2.716 - 3	0.1	01				kB	2.59e	-2	0.333	-0.394
	(a) Pin	0.1					С	-2.456	e - 2	-0.394	0.672
	(a) DII	KS							(b) Chou	
				2	S	k₽		kB			
		5	2 1 2	$\frac{p_e}{p_e} = 2 - 7$	$\frac{0_n}{1e-5}$ 1	$\frac{KD_e}{1.47e}$. 2	$\frac{kD_n}{-2.03}$			
		Se S	7 01	e = 5 60	32e - 4	7 50e -	- <u> </u>	-2.93 -0.452			
		kB	1 47	2e - 2 - 7	50e - 4	0.276		-159			
		kB_e	-2	293 () 452	-159		1 45e5			
		nd n	-	(c)	Hong et al	107		1. 1000			
				(0)	nong et al.						
		S	е	S_n	kB _e	2	kB_n	(3		
	S_e	2.84	e−3	2.66e —	3 2.61e	-2	1.44	-2.93	3e - 2		
	S_n	2.66	e−3	5.87e —	2 2.41 <i>e</i>	-2 (0.434	-2.68	8e - 2		
	kB_e	2.61	e - 2	2.41 <i>e</i> –	2 0.32	25	21.1	-0.	438		
	kB_n	1.4	44	0.434	21.1	1	4779	-4	6.6		
	C	-2.93	3e-2	-2.68e -	-2 -0.4	38 -	-46.6	0.8	356		
				(d) Y	<i>l</i> oshida et a	1.					
		S		To	В.		R ,	B			
	S	1.886	-3	9.38e - 2	$\frac{2}{2} \frac{19e}{-2}$	2 1 10	$\frac{1}{1}e - 4$	1 056	$\frac{t}{2}$ - 3		
	T_{o}	9.386	-2	15.4	0.969	8.2	2e — 4	3.136	$\frac{2}{2} - 2$		
	B.	2.19	$\frac{-2}{-2}$	0.969	0.617	1.0	-e — 2	3.65	$\frac{-2}{2}$		
	R_{J}	1.10e		8.22e - 4	1.07e - 2	2 6.54	4e — 4	2.176	e^{-3}		
	B_{t}	1.05e	-3	3.13 <i>e</i> −2	3.65e – 2	2.17	7e — 3	8.966	2 - 3		
	L	1		(e)	Voltz et al.						
				(0)							

Table S9. Organic glass proton light yield model parameter covariance matrices.

6 Proton and Carbon Light Yield Models

Model	S or S_e	S _n	kB or kB _e	kB _n	С
	(rel. 477 keV e ⁻)	(rel. 477 keV e ⁻)	(mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.51	_	13.2	_	_
Chou	2.51	_	12.9	_	0.416
Hong et al.	2.51	2.05	12.8	89.7	_
Yoshida et al.	2.51	2.51	12.8	86.3	2.69 <i>e</i> – 3

Table S10. Model parameters obtained through simultaneous fit of the EJ-204 proton and carbon light yield data.

<i>S</i> (rel. 477 keV e ⁻)	T_0 (keV)	B_s (mg/cm ² /MeV)	R_d	$B_t \text{ (mg/cm^2/MeV)}$
1.68	11.0	4.32	9.37e - 2	0.275
		(b) Voltz et al.		

	6		1 D					S		kB	С
	S		кВ				s	1.52e - 2	20 2.6	8e - 13	2.04e - 13
S	1.22e - 1.22e	20 -1	.27e – 12			k	B	2.68e - 1	13 ().112	-2.66e - 2
kB	-1.27 <i>e</i> -	12 7.	73e - 2			Ċ	2	2.04e - 1	13 -2.	.66e - 2	1.09e - 2
	(a)	Birks							(b) C	hou	
										nou	
									-		
			S _e	S	n	kB _e		kB _n	_		
		S_e	1.17e−7	2.47	e - 6 = 1.8	9e — 7	2.	.88 <i>e</i> – 4			
		S_n	2.47 <i>e</i> – 6	0.1	.54 —4.	61 <i>e</i> – 2		5.73			
		kB_e	1.89 <i>e</i> −7	-4.61	1e-2 = 0	.100		-4.51			
		kB_n	2.88e - 4	5.	73 –	-4.51		433	_		
				(c)	Hong et al.						
		S		S	kB	1	k B		C	_	
	S	1.01e	-5 -3($\frac{0}{12e-8}$	$\frac{RE_{e}}{352e-5}$	3.0	$\frac{0}{9e}$ –	4 -5	$\frac{0}{76e - 6}$	_	
	S S	-3.02e	-8 34	0e - 4	-2.67e - 4	2.3	1e —	2 -3	28e - 5		
	kB	3 52e	-5 -26	57e — 4	0 100		4.37	38	-5 = -5		
	kB_{m}	3.09e	-4 2.3	1e - 2	-4.37		371	-2.	03e - 2		
	C	-5.76e	2 - 6 - 3.2	28e — 5	3.88e - 5	-2.0	03e –	-2 1.4	10e — 4		
				(d) Y	oshida et al.					_	
				() -							
		-									
		S		T_0	B_s	R	d		B_t		
	S	4.37e	-5 -9.	77e — 4	2.25e - 6	-6.19	9e — 1	7 -1.1	1e - 6		
	T_0	-9.776	e - 4 = 0	.932	7.55 <i>e</i> – 3	4.70	e — 4	1.69	9e - 3		
	B_s	2.25e	-6 7.5	5e — 3	2.35e - 2	1.23	<i>e</i> −3	3.00)e — 3		
	R_d	-6.196	e-7 4.7	0 <i>e</i> – 4	1.23e - 3	9.63	e — 5	2.40)e — 4		
	B_t	-1.11e	e - 6 1.6	9e - 3	3.00e - 3	2.40	<i>e</i> − 4	6.36	be-4		
				(e)	Voltz et al.						

Table S11. Covariance matrices for model parameters obtained through simultaneous fit of the EJ-204 proton and carbon light yield data.

Table S12. Model parameters obtained through simultaneous fit of the EJ-309 proton and carbon light yield data.

Model	S or S _e	S _n	<i>kB</i> or <i>kB</i>	kB _n	С
	(rel. 477 keV e ⁻	(rel. 477 keV e^{-1}) (mg/cm ² /MeV)	(mg/cm ² /MeV)	$(mg/cm^2/MeV)^2$
Birks	2.51	_	10.5	_	_
Chou	2.22	_	6.81	_	5.05
Hong et al.	2.42	2.51	7.61	2258	—
Yoshida et al.	2.17	2.51	6.46	10.7	5.09
		(a) Birks, Chou, Ho	ng et al. and Yoshida	et al.	
<i>S</i> (rel. 477 keV	$V e^{-}$) T_{0}	(keV) B_s (n	ng/cm ² /MeV)	R _d	$B_t \text{ (mg/cm}^2/\text{MeV)}$
1.70	1.8	5.67		0.192	0.468

Table S13.	Covariance ma	trices for model	parameters o	btained throug	h simultaneous	fit of the I	E J-309 p	proton and
carbon lig	ht yield data.							

	S	kB		S	kB	С
- C	$\frac{1}{2}$	1220 2	S	5.67e - 2	0.416	-7.98e - 2
5 1. р	2.50e - 5	1.52e - 2	kВ	0.416	3.23	-0.847
KD	1.32e - 2	0.304	С	-7.98e - 2	-0.847	0.951
	(a) Birk	S		(b) Chou	

	S_e	S_n	kB_e	kB_n
S_e	2.10e - 2	1.99 <i>e</i> – 4	0.165	-17.9
S_n	1.99 <i>e</i> – 4	5.47e - 4	2.70e - 3	-1.16
kB_e	0.165	2.70e - 3	1.83	-576
kB_n	-17.9	-1.16	-576	5.20e5
-				

(c)	Hong	et	al.
-----	------	----	-----

	S _e	S _n	kB _e	kB _n	С
S_e	6.06e - 2	-8.92e - 4	0.443	3.15	-0.103
S_n	-8.92e - 4	2.46e - 3	-7.72e - 3	-2.97	1.50e - 2
kB_e	0.443	-7.72e - 3	3.42	27.8	-1.01
kB_n	3.15	-2.97	27.8	1.05e4	-50.4
С	-0.103	1.50e - 2	-1.01	-50.4	1.10

	S	T_0	B_s	R_d	B_t
S	2.55e - 3	7.69e - 2	-1.99e - 2	-1.29e - 3	-1.47e - 3
T_0	7.69e - 2	9.72	-1.12	-5.96e - 2	-7.38e - 2
B_s	-1.99e - 2	-1.12	0.685	2.76e - 2	3.65e - 2
R_d	-1.29e - 3	-5.96e - 2	2.76e - 2	1.48e - 3	1.92e - 3
B_t	-1.47e - 3	-7.38e - 2	3.65e - 2	1.92e - 3	2.58e - 3

(e)	Voltz	et	al.
-----	-------	----	-----

Table S14. Model goodness-of-fit for proton and carbon light yield data with no parameter constraints. The values correspond to the median χ^2 statistic from the Monte Carlo distribution divided by the number of degrees of freedom. The uncertainty is given by the median absolute deviation.

Scintillator	Birks	Chou	Hong et al.	Yoshida et al.	Voltz et al.
EJ-204	$(15627 \pm 1464)/43$	$(15470 \pm 1409)/42$	$(14136 \pm 1465)/41$	$(13808 \pm 1443)/40$	$(4632 \pm 1143)/40$
EJ-309	$(56658 \pm 10261)/54$	$(18643 \pm 3376)/53$	$(13409 \pm 3364)/52$	$(10578 \pm 3164)/51$	$(4798 \pm 661)/51$