Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supplementary material

Device Structure	Endurance cycles	Ref.
FTO/MAPbl₃/Ag	10 ³	J. Phys. Chem. C 2018, 122 (11), 6431–6436,
ITO/PEDOT:PSS/MAPbBr ₃ /AI	1.2·10 ²	Organic Electronics 2018, 62, 412 –418
ITO/Cs _{0.06} FA _{0.78} MA _{0.16} Pb(I _{0.92} Br _{0.08}) ₃ /Au	10 ³	ACS Applied Electronic Materials 2020, 2 (11), 3695–3703
ITO/PEDOT:PSS/MAPbl ₃ /PMMA/AI	2.1·10 ²	Journal of Alloys and Compounds 2019, 783, 478–485
ITO/ MAPbl ₃ /ZnO/Au	10 ³	Journal of Alloys and Compounds 2019, 811, 151999
Ag/ MAPbl ₃ /Ag	2·10 ²	ACS Nano 2018, 12 (2), 1242– 1249
Si/SiO ₂ /Au/MAPbl ₃ /Au	1.2·10 ³	Advanced Materials 2019, 31 (21), 1804841
ITO/MAPbl _{3-x} Cl _x /2D Perovskite/Al	3·10 ²	ACS Appl. Mater. Interfaces 2020, 12 (13), 15439–15445
Si/SiO ₂ /Ti/Pt/MAPbl ₃ /Au	5·10 ²	Advanced Materials 2017, 29 (29), 1701048
Si/Pt/δ-FAPbl₃/Ag	1.2·10 ³	Advanced Electronic Materials 2018, 4 (9), 1800190
This Work	3·10 ³	<u>-</u>

Table S1: Literature summary of the endurance perovskite-based memristors in comparison with the devices of present study.

Structure	V _{set} /V _{Reset}	ON/OFF	Endurance	Retention	Mechanism	Ref.
FTO/MAPbl _{3-X} Cl _x /Au	1.47 /-1.41	104	5·10 ¹	4·10 ⁴	Hole trapping at Perovskite/Au Interface	Advanced Functional Materials 2018, 28 (15), 1800080
Au/(PEA) ₂ PbBr ₄ /Graphene	2.8/-1	10 ¹	10 ²	10 ³	Formation/Rupt ure of V _{Br} CFs	ACS Nano 2017, 11 (12), 12247–12256
ITO/MAPbl _{3-x} /Ag	0.32/-0.52	104	5·10 ²	1.2·10 ³	Formation/Rupt ure of V ₁ CFs	Advanced Functional Materials 2019, 29 (5), 1806646
Si/SiO ₂ /Ti/Au/MAPbl ₃ /Au or Ag	0.32/-0.13	10 ⁶	10 ³	1.2·10 ³	Formation/Rupt ure of V _I CFs	Advanced Materials 2017, 29 (29), 1700527
TiN/Hf/HfO _x /TiN	≈ 0.5/-0.5	5·10 ¹	5·10 ⁷	>10 years	Formation/ Rupture of Metallic CFs	International Electron Devices Meeting; 2011; p 31.6.1-31.6.4
Ni/GeO/STO/TaN	-1.1/0.13	3·10 ⁶	10 ⁶	4·10 ⁵	Hopping via defects	2010 Symposium on VLSI Technology, 2010, pp. 85-86
Pt/TaO _x /Pt	-0.9/2	1-2·10 ¹	>10 ⁹	>10years	Shottky Barrier modification at Pt/TaO _x interface	IEEE International Electron Devices Meeting; 2008; pp 1–4
ITO/PEDOT:PSS/MAPbBr ₃ /AI	-0.2/3	3.6·10 ⁶	1.2·10 ²	104	Formation/Rupt ure of V _{Br} CFs	Organic Electronics 2018, 62, 412–418
ITO/CsPbl₃/Ag	-0.1/0.8	10 ⁶	10 ²	10 ³	Formation/Rupt ure of V ₁ CFs	Advanced Materials Interfaces 2019, 6 (7), 1802071
ITO/Cs₂AgBiBr ₆ /Au	1.53/-3.4	10 ³	1.3·10 ³	10 ⁵	Formation/Rupt ure of Ag and V _I CFs	Small 2019, 15 (49), 1905731
This Work	0.15/-0.65	10 ⁵	3·10 ³	3.6·10 ³	Formation/Rupt ure of V ₁ CFs	-

 Table S2: Literature summary of different memristors technologies in terms of switching characteristics and mechanism.

Structure	PV Cell	Memory	Photo- Memristor	Synapses	Photo- Synapses	Energy Consumption	Ref.
FTO/PZT/PCBM:P3HT/V ₂ O ₅ /Ag	~	\checkmark	×	×	×	-	Advanced Functional Materials 2018, 28 (17), 1–7
FTO/c-TiO ₂ /m-TiO ₂ /RbCsFAMA/Spiro- OMeTAD/Au	\checkmark	\checkmark	×	×	×	-	Solar RRL 2021, 5 (4), 2000707
FTO/MAPbl _{3-x} Cl _x /Au	×	\checkmark	✓	×	×	-	Advanced Functional Materials 2018, 28 (15), 1800080
ITO/MAPbBr ₃ /Au	×	\checkmark	\checkmark	×	×	-	Advanced Functional Materials 2018, 28 (3), 1704665
SiO ₂ /Si/Pt/Ti/(Cs ₃ Bi ₂ I ₉) _{0.4} (CsPbI ₃) _{0.6} /Ag	×	\checkmark	×	\checkmark	×	-	Advanced Functional Materials 2019, 29 (49), 1906686
FTO/MAPbl ₃ /Ag	×	\checkmark	×	\checkmark	×	47 fJ/µm²	Journal of Alloys and Compounds 2020, 833, 155064
n+Si/PEDOT:PSS:PFI/MAPbBr ₃ /Al	×	\checkmark	×	\checkmark	×	20 fJ	Advanced Materials 2016, 28 (28), 5916–5922
ITO/PEDOT:PSS/MAPbl ₃ /Au	×	\checkmark	×	\checkmark	\checkmark	55 fJ	Advanced Electronic Materials 2016, 2 (7), 1600100
Au/(PEA) ₂ PbBr ₄ /Graphene	×	\checkmark	×	\checkmark	×	400 fJ	ACS Nano 2017, 11 (12), 12247 –12256
ITO/KI-MAPbl ₃ /Au	×	\checkmark	×	\checkmark	\checkmark	-	Advanced Electronic Materials 2021, 7 (8), 2100291
ITO/PEDOT:PSS/pTPD/OGB Capped CsPbBr₃ Nanocrystals/Ag	×	\checkmark	×	\checkmark	×	-	Nat. Comm. 2022, 13 (1), 2074
TiN/Hf _{0.5} Zr _{0.5} O ₂ /Pt	×	\checkmark	×	\checkmark	×	1.8 pJ	Nanoscale 2018, 10 (33), 15826 –15833
Pt/AlO _y HfO _x /TiN	×	\checkmark	×	\checkmark	×	0.29 pJ	ACS Nano 2014, 8 (7), 6998– 7004.
ITO/PMMA/Bi ₂ Se ₃ /MoSe ₂ /Ag	×	\checkmark	\checkmark	\checkmark	\checkmark	100 pJ	Small 2019, 15 (7), 1805431
Au/MoS ₂ /Cu	×	\checkmark	×	\checkmark	×	-	Nano Lett. 2019, 19, 4, 2411– 2417
ITO/BCPO/AI	×	\checkmark	×	\checkmark	×	-	J. Chem. C 2019, 7 (6), 1491– 1501
Ta/PEDOT:PSS/Ag	×	✓	×	\checkmark	×	-	J. Mater. Chem. C 2013, 1 (34), 5292–5298
This Work	~	✓	✓	✓	\checkmark		

Table S3: Literature summary of different memristor technologies in terms ofmultifunctionalities such as PV, memory, photomemristor and synaptic functions.

Figure S1. TPV of MemPVCell-1. a) TPV Lifetime as a function of voltage. **b)** TPV Decays for various light intensities

Figure S2. TPC of MemPVCell-1. (a) Extracted Charge as a function of Current Density. **(b)** Recorded TPC Transients for various light intensities

Figure S3. Photo-CELIV measurements of MemPVCell-1 towards mobility extraction. (a) Recorded Photo-CELIV Transients for Pulse-Ramp delay times ranging from 5-10µs. (b) Mobility as a function of delay time extracted based on raw data of (a).

(a)

Figure S4. EQE Spectrum of the MemPVCell-1. The Integrated J_{SC} is equal to 19.33 mA cm⁻² in agreement with values reported in Figure 2.

Figure S5. Electrochemical Impedance Spectroscopy data of MemPVCell-1 before the memristive channel formation at different dc bias varying from 0 to 1 volt.

Set Voltage (V)	Reset Voltage (V)
0.13	-0.79
0.2	-0.62
0.16	-0.46
0.35	-0.48
0.15	-0.62
0.11	-0.77
0.09	-0.75
0.15	-0.76
0.11	-0.68
0.12	-0.71
0.22	-0.6
0.17	-0.66
0.12	-0.49
0.12	-0.69
0.11	-0.69
0.15±0.06	-0.65±0.10

Set Voltage (V)	Reset Voltage (V)
0.14	-0,89
0.11	-0.77
0.18	-0.7
0.11	-0.7
0.16	-0.78
0,24	-0.64
0.12	-0.77
0.13	-0.78
0.13	-0.67
0.11	-0.83
0.13	-0.72
0.11	-0.75
0.11	-0.83
0.1	-0.71
0.09	-0.72
0.13±0.04	-0.75±0.06

Average Set and Reset Voltage for MemPVCell-1

Average Set and Reset Voltage for MemPVCell-2

Table S4. Average Set and Reset Voltages for MemPVCell -1 and MemPVCell-2 devices. Icc=10mA and a scanning rate of 10 mV s⁻¹ were used. **(a)**

Figure S6. Multiple dc resistance switching loops for a) MemPVCell-1 and b) MemPVCell-2. I_{cc} of 10mA and a scanning rate of 100 mV s⁻¹ were used.

Parameter (V)	Dark	Illuminated
Set Voltage	0.25	0.48
Reset Voltage	-0.9	-0.82

Figure S7. Influence of light illumination on the resistive switching behavior of MemPVCell -1. I_{cc}=10mA and a scanning rate of 100 mV s⁻¹ were used.

Intensity (mW cm ⁻²)	V _{SET} (V)	V _{RESET} (V)
8	0.20 ± 0.04	-0.68 ± 0.09
16	0.31±0.16	-0.62 ± 0.06

Scan Rate mV s ⁻¹	V _{SET} (V)	V _{RESET} (V)
50	0.17 ± 0.01	-0.65 ± 0.04
100	0.31±0.16	-0.62 ± 0.06
300	0.37±0.14	-0.60±0.10

Table S5. a) Effect of Light Intensity at constant Scan Rate (100 mV s⁻¹), b) Effect of Scan Rate at Constant Illumination (16mW) for MemPVCell-1

Pulse Amplitude (V)	ON/OFF Ratio	Retention Time (s)
$\pm 1 V$	1.26.104	3.6·10 ³
$\pm 2V$	1.90·10 ²	3·10 ³

Table S6. ON/OFF ratio and retention time variation for $\pm 2V$ pulse amplitude

Figure S8. SET process of MemPVCell-1 achieved through impedance spectroscopy for increasing applied bias.

Figure S9. (a) dc Resistive switching behaviour, (b) endurance and (c) retention tests of the MemPVCell-3 (reference cell without PCBM). The following settings were used: (a) Scan from 0.8V to -0.8V with 100mV s⁻¹ Scan Rate and Compliance Current I_{cc} =10mA (b) ,number of pulses up to 10³, amplitude ±500mV, pulse duration 100ms. For resistance reading, a pulse with amplitude of 20mV and duration of 10ms was used. (c) Pulse Amplitude ±600mV, 500ms duration. Read pulse amplitude -20mV for 10ms duration every 10s.

Figure S10. Resistive switching behaviour of the MemPVCell-4 (reference cell without PTAA)