Supplementary Materials

Nanoclay-based 3D aerogel framework for flexible flame retardants

Weimin Xie^b, Jie Wang^b, Kaixuan Shang^b, Hongyun Chen^b, Aidong Tang^e, Mingjie Wu^f, Xun Cui^{a,c,d}, Huaming Yang^{a,b,c,d*}

^a Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.

^b Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.

^c Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China.

^d Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China.

^e College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.

^f Electrochemistry/Corrosion Laboratory, Department of Chemical Engineering, McGill University, Montréal, Québec H3A 0C5 (Canada).

*Corresponding author. Email: hm.yang@cug.edu.cn, hmyang@csu.edu.cn

This PDF file includes:

Supplementary Text Figs. S1 to S11 Tables S1 to S3 Movies S1 to S5 References 1 to 15

Other Supplementary Materials for this manuscript include the following:

Movies S1 to S5

Fig. S1 SEM images of (A) R-RT, (B) R-300, (C) R-450 and (D) R-900.

Fig. S2 (A) Aerogel without PA; B Aerogels without synthesized PA in situ

Fig. S3 XRD patterns of cellulose nanocrystal, rectorite and CR.

Fig. S4 (A) Photographs of CR/PA/PVA aerogels with a diameter of 14 cm. (B-D) CR/PA/PVA-RT aerogels can support pressure of 10 kN at 80% strain and quickly recover to its original height. (E-H) Schematics of compression and elasticity mechanism of CR/PA/PVA aerogel.

Fig. S5 FTIR spectra of rectorite nanoclay. (R100-R1100 refer to rectorite calcined at 100-1100 °C, respectively. Calcination was performed in a laboratory programmable muffle furnace at a heating rate of 10 °C/min. After being kept at the target temperature for 2 h, it was naturally cooled to RT).

Fig. S6 Value of compressive strength obtained based on Fig. 2h at 80% strain.

Fig. S7 FTIR spectra of the CR/PA/PVA aerogels.

Fig. S8 (A) TGA weight loss and (B) DSC curves of CR/PA/PVA aerogels and control aerogel.

Fig. S9 Photographs of residues after cone calorimeter tests for (A) C/PA/PVA, (B) CR/PA/PVA-RT, and (C) CR/PA/PVA-900.

Fig. S10 Photographs of alcohol lamp combustion experiments of (A) C/PA/PVA, (B) CR/PA/PVA-RT, and (C) CR/PA/PVA-900. Magnification corresponding to inset of Fig. 5.

Fig. S11 FTIR spectra of cellulose nanocrystals, rectorite, PA, PVA, CR/PA/PVA-RT aerogel, and CR/PA/PVA-RT aerogels after cone calorimeter tests.

Samula	Ignition time	gnition time Peak heat-release rate Total heat release		Total smoke release	
(s)		(kW/m^2)	(MJ/m^2)	(m^2/m^2)	
C/PA/PVA	24	37.1	5.69	522.7	
CR/PA/PVA-RT	249	12.9	1.3	72.6	
CR/PA/PVA-300	273	14.2	1.4	49.4	
CR/PA/PVA-450	No flame	8.3	2.0	77.6	
CR/PA/PVA-900	126	13.6	1.2	338.8	

Table S1 Cone calorimeter data of obtained aerogels

Samula	Density	Ignition time	Peak heat-release	Dafaranaa
Sample	(g/cm^3)	(s)	rate (kW/m ²)	Reference
PVA/MMT	0.093±0.003	4	140.1	(1)
PVA/MMT/AP	0.115		115	(2)
PVA/MMT/AP	0.097 ± 0.001	6	80.4	(3)
PVA/MMT/gelatin	0.108 ± 0.006	3	122	(4)
PVA/SA/MMT/boric acid/CaCl2	0.306±0.012	14±1	82.1	(5)
SA/MMT	0.096 ± 0.002	192	19.3	(6)
SA/MMT	0.098 ± 0.001	215	22.7	(7)
Polyimide/graphene oxide/MMT	0.090 ± 0.002	4	52.5	(8)
Xanthan gum/MMT	0.056 ± 0.001		55.2	(9)
SA/MMT	0.11 ± 0	No flame	20	(10)
CR/PA/PVA-RT	0.105	249	12.9	This work
CR/PA/PVA-450	0.998	No flame	8.3	This work

Table S2 Comparison of mechanical properties and flame retardancy of CR/PA/PVA aerogels with other clay-based composite aerogels

Notes: MMT, montmorillonite; PVA, poly(vinyl alcohol); AP, ammonium polyphosphate; SA, sodium alginate

Sample	Ignition time (s)	Peak heat-release rate (kW/m ²)	Compression strength (kPa)	Reference
MFR/pectin	27	80.1		(11)
PFR/SiO ₂		19±1	150	(12)
Cellulose composite	9	58.51	1600	(13)
Co ₃ O ₄ -graphene/epoxy resin		329		(14)
PP/fullerene and carbon nanotubes		400±25		(15)
CR/PA/PVA-RT	249	12.9	178.8	This work
CR/PA/PVA-450	No flame	8.3	42	This work

Table S3 Comparison of mechanical properties and flame retardancy of CR/PA/PVA aerogels with other types of materials

Notes: MFR, melamine-formaldehyde resin; PP, polypropylene; PFR, phenol-formaldehyde resin

References

- H.B. Chen, B. Liu, W. Huang, J.S. Wang, G. Zeng, W.H. Wu, D.A. Schiraldi, ACS Appl. Mater. Inter., 2014, 6, 16227-16236.
- 2. L. Wang, M. Sánchez-Soto, M.L. Maspoch, Mater. Design. 2013, 52, 609-614.
- Y.T. Wang, S. F. Liao, K. Shang, M.J. Chen, J.Q. Huang, Y.Z. Wang, D.A. Schiraldi, ACS Appl. Mater. Inter., 2015, 7, 1780-1786.
- Y.T. Wang, H.B. Zhao, K. Degracia, L.X. Han, H. Sun, M.Z. Sun, Y.Z. Wang, D.A. Schiraldi, ACS Appl. Mater. Inter., 2017, 9, 42258-42265.
- 5. N.J. Wu, F.K. Niu, W.C. Lang, M.F. Xia, Carbohyd. Polym., 2019, 221, 221-230.
- 6. X.L. Li, M.J. Chen, H.B. Chen, Compos. Part. B., 2019, 164, 18-25.
- 7. H.B. Chen, Y.Y. Ao, D. Liu, H.T. Song, P. Shen, Int. Eng. Chem. Res., 2017, 56, 8563-8567.
- L.Z. Zuo, W. Fan, Y.F. Zhang, L.S. Zhang, W. Gao, Y.P. Huang, T.X. Liu, Compos. Sci. Technol. 2017, 139, 57-63.
- 9. L.Wang, D. A.Schiraldi, M.Sánchez-Soto, Ind. Eng. Chem. Res., 2014, 53, 7680-7687.
- H.B. Chen, P. Shen, M.J. Chen, H.B. Zhao, D.A. Schiraldi, ACS Appl. Mater. Inter. 2016, 8, 32557-32564.
- 11. H.B. Chen, X.L. Li, M.J. Chen, Y.R. He, H.B. Zhao, Carbohyd. Polym., 2019, 206, 609-615.
- Z.L. Yu, N. Yang, V. Apostolopoulou-Kalkavoura, B. Qin, Z.Y. Ma, W.Y. Xing, C. Qiao, L. Bergström, M. Antonietti, S.H. Yu, *Angew. Chem. Int. Edit.*, 2018, 57, 4538-4542.
- 13. X.L. Luo, J.Y. Shen, Y.N. Ma, L. Liu, R.J. Meng, J.M. Yao, Carbohyd. Polym., 2020, 230, 115623.
- 14. X. Wang, W.Y. Xing, X.M. Feng, B. Yu, H.D. Lu, L. Song, Y. Hu, *Chem. Eng. J.*, 2014, **250**, 214-221.
- 15. P.G. Song, Y. Shen, B.X. Du, Z.H. Guo, Z.P. Fang, Nanoscale, 2009, 1, 118-121.

Movies S1 to S5

Movie S1. Demonstration of the excellent compression resilience of CR/PA/PVA composite aerogels.

Movie S2. Demonstration that the CR/PA/PVA aerogel with a diameter of 14 cm can withstand a pressure of 10 kN and has good resilience.

Movie S3. Demonstration of the burning process of CR/PA/PVA composite aerogel on a cone calorimeter.

Movie S4. Demonstration of the burning process of C/PA/PVA composite aerogel on a cone calorimeter.

Movie S5. Demonstration of three kinds of aerogels being combusted on an alcohol lamp, including C/PA/PVA, CR/PA/PVA, and CR/PA/PVA-900.