Supporting Information

Imidazole encapsulated in core-shell MOFs@COFs with high

anhydrous proton conductivity

Shucheng Liu,^{a, b} Han Li,^b Yu Shuai,^b Zhao Ding,^{a*} and Yi Liu^{b*}

^a College of Big Data and Information Engineering, Guizhou University; ^b School of Physical Sciences, Guizhou University

Fig. S1 PXRD pattern of TAPB-DMTP-COFs

Fig. S3 PXRD pattern of Imidazole

Fig.S4 N_2 adsorption-desorption isotherms and pore size distributions of UiO-67 (a,b) and TAPB-DMTP-COFs(c,d)

Materials	BET Surface	Langmuir	Pore Volume	
	Area	Surface Area	$(cm^3 g^{-1})$	
	$(m^2 g^{-1})$	$(m^2 g^{-1})$		
TAPB-DMTP-	1962	2897	1.19	
COFs				
UiO-67	1218	1751	0.68	
MC-1	1040	1695	0.62	
MC-3	1181	1715	1.05	
Im@MC-11	14	24	0.07	
Im@MC-12	10	14	0.07	

 Table S1
 Specific surface and pore volume of the samples

Im@MC-31	10	17	0.07
Im@MC-32	6.7	11	0.09

Fig.S5 Impedance spectra of Im@MC-11

Fig.S6 Impedance spectra of Im@MC-31

Materials	Structures	Method	σ (S/cm)	E (eV)	Ref.
Im@MC-31	3D	Post loaded method	1.40 × 10 ⁻² (120 °C, 0 % RH)	0.14	This work
Im@TPB-DMTP- COF	2D	Post loaded method	4.37 × 10 ⁻³ (130 °C, 0 % RH)	0.21	1
Im@Tp-DADMB	2D	Post loaded method	2.40 × 10 ⁻³ (130 °C, 0 % RH)	0.16	2
Im@Py-TT-COF- 50	2D	Post loaded method	3.08 × 10 ⁻³ (130 °C, 0 % RH)	0.36	3
Im@CuBTC	3D	Post loaded method	1.04 × 10 ⁻⁴ (70 °C, 0 % RH)	_	4
{Al(µ2-OH)(1,4- ndc)}n⊃Im	3D	Post loaded method	2.20 × 10 ⁻⁵ (120 °C, 0 % RH)	0.60	5
Imidazole@UiO-67	3D	Post loaded method	1.44 × 10 ⁻³ (120 °C,0 % RH)	0.36	6
Tz@b-PCMOF-2	2D	Post loaded method	2.50 × 10 ⁻³ (150 °C,0 % RH)	0.34	7
His@Al(m2- OH)(1,4-bdc)	3D	Post loaded method	1.70 × 10 ⁻³ (150 °C,0 % RH)	0.25	8
PA@Tp-Azo	2D	H ₃ PO ₄ loaded	6.70 × 10 ⁻⁵ (67 °C, 0 % RH)	-	9

Table S2Comparison of proton conductivity of related materials

РА@ТрВру-МС	2D	H ₃ PO ₄ loaded	2.50 × 10 ⁻³ (120 °C, 0 % RH)	0.11	10
phytic@TpPa- (SO3H-Py)	2D	Phytic acid loaded	3.00 × 10 ⁻⁴ (120 °C, 0 % RH)	0.16	11
SO ₃ H-IL-PMo ₁₂ @MIL-101	3D	Post loaded method	5.57 × 10 ⁻² (70 °C, 70 % RH)	0.36	12
Im@MOF-808	3D	Post loaded method	3.45 × 10 ⁻² (65 °C, 99 % RH)	0.25	13
Im@s-PMO	3D	Post loaded method	7.11 × 10 ⁻³ (180 °C, 0 % RH)	-	14
PIL-TB-COF	2D	[PSMIm] [HSO ₄] anchored	2.21 × 10 ⁻³ (120 °C, 0 % RH)	0.30	15

References

- 1 H. Xu, S. S. Tao, D. L. Jiang, Nat Mater, 2016, 15, 722.
- 2 J. Li, Z. Z. Wu, H. Li, H. Liang, S. S. Li, New J Chem, 2018, 42, 1604.

3 S. Li, Y. Z. Liu, L. Li, C. X. Liu, J. N. Li, S. Ashraf, P. F. Li, B. Wang, *ACS Appl Mater Interfaces*, 2020, **12**, 22910.

4 G. A. Bodkhe, M. A. Deshmukh, H. K. Patil, S. M. Shirsat, V. Srihari, K. K.Pandey,
G. Panchal, D. M. Phase, A. Mulchandani, M. D. Shirsat, *J Phys D: Appl Phys*, 2019,
52.

5 S. Bureekaew, S. Horike, M. Higuchi, M. Mizuno, T. Kawamura, D. Tanaka, N. Yanai, S. Kitagawa, *Nat Mater*, 2009, **8**, 831.

6 S. C. Liu, Z. F. Yue, Y. Liu, Dalton Tran, 2015, 44, 12976.

7 J. A. Hurd, R. Vaidhyanathan, V. Thangadurai, C. I. Ratcliffe, I. L. Moudrakovski,

G. K. H. Shimizu, Nat Chem, 2009, 1, 705.

8 D. Umeyama, S. Horike, M. Inukai, Y. Hijikata, S. Kitagawa, *Angew Chem Int Edit*, 2011, **50**, 11706.

9 S. Chandra, T. Kundu, S. Kandambeth, R. BabaRao, Y. Marathe, S. M. Kunjir, R. Banerjee, *J Am Chem Soc*, 2014, **136**, 6570.

- 10 D. B. Shinde, H. B. Aiyappa, M. Bhadra, B. P. Biswal, P. Wadge, S. Kandambeth,
- B. Garai, T. Kundu, S. Kurungot, R. Banerjee, J Mater Chem A, 2016, 4, 2682.
- 11 S. Chandra, T. Kundu, K. Dey, M. Addicoat, T. Heine, R. Banerjee, *Chem Mater*, 2016, **28**, 1489.
- 12 X.M.Li, Y.M.Wang, Y.B. Mu, J. Liu, L.Zeng, Y.Q.Lan, ACS Appl. Mater. Interfaces, 2022, 14, 9264.
- 13 H.B.Luo, Q. Ren, P. Wang, J. Zhang, L.F.Wang, X.M.Ren, ACS Appl. Mater. Interfaces, 2019, **11**, 9.
- 14 L.Wu, Y.Yang, Y.Ye, Z.Yu, Z.Song, S.Chen, L.Chen, Z.Zhang, S.Xiang, ACS Appl. Energy Mater, 2018, 1, 5068.
- 15 Y. Guo, X.Y. Zou, W.Z. Li, Y. Hu, Z.Y. Jin, Z.Sun, S.C. Gong, S.Y. Guo, F. Yan, *J. Mater. Chem. A*, 2022, **10**, 6499.