Electronic Supplementary Information

Exploring the Effect of *B*-Site Al³⁺-Mg²⁺ Dual Substitution on Optoelectronic, Surface, and Photocatalytic Properties of BaTaO₂N⁺

Mirabbos Hojamberdiev^{1,2*}, Ronald Vargas^{3,4}, Zukhra C. Kadirova^{5,6}, Katsuya Teshima^{2,7}, and Martin Lerch¹

¹Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany

²Department of Materials Chemistry, Shinshu University, Nagano 380-8553, Japan

³Instituto Tecnológico de Chascomús (INTECH) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) / Universidad Nacional de San Martín (UNSAM). Avenida Intendente Marino, Km 8,2, (B7130IWA), Chascomús, Provincia de Buenos Aires, Argentina

⁴Escuela de Bio y Nanotecnologías, Universidad Nacional de San Martín (UNSAM). Avenida Intendente Marino, Km 8,2, (B7130IWA), Chascomús, Provincia de Buenos Aires, Argentina

⁵Department of Inorganic Chemistry, National University of Uzbekistan, 100174 Tashkent, Uzbekistan

⁶Uzbekistan-Japan Innovation Center of Youth, University Street 2B, 100095 Tashkent, Uzbekistan

⁷Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan

^{*}Corresponding author: E-mail addresses: khujamberdiev@tu-berlin.de and hmirabbos@gmail.com (M. Hojamberdiev)

Table S1. Al:Mg-(co)substituted BaTaO₂N configurations at the total substituent content of 50 at.%, corresponding chemical compositions, structural parameters, and band gap values calculated by DFT-HSE12s.

Designation	Chemical compositions	Lattice constants	Cell volume	Band gap, eV	
		<i>a b c</i> , Å	<i>V</i> , Å ³		
BTON*	BaTaO ₂ N	4.111	69.487	1.49 (Γ-Γ)	
BTON:A1	$\mathbf{P}_{\mathbf{a}}\mathbf{T}_{\mathbf{a}} = \mathbf{A}1 = \mathbf{O} \mathbf{N}$	1 050, 1 050, 1 022	66 151	1.61(М-Г); 1.66	
(50 at.%)	$Ba1a_{0.5}A1_{0.5}O_{2}N$	4.030, 4.030, 4.033	00.131	(Γ-Γ)	
BTON:Mg	ΡοΤο Μα Ο Ν	4 071, 4 071, 4 222	70 127	2.01(M-Γ);	
(50 at.%)	$Ba_{1}a_{0.5}w_{20.5}O_{2}w$	4.0/1, 4.0/1, 4.232	/0.13/	2.02(Γ-Γ)	
BTON:Al:Mg	$\mathbf{P}_{\mathbf{a}}\mathbf{T}_{\mathbf{a}}$ A1 M α O N	4 072, 4 000, 4 108	60 501	1.44 (X-Y);	
(25:25 at.%)	Ba1a0.5A10.25W1g0.25O2W	4.075, 4.099, 4.108	00.304	1.84 (Γ-Γ)	
BTON:Al:Mg	$BaTa_{0.5}Al_{0.375}Mg_{0.125}O_2$	1 062, 1 062, 1 088	67 195	1 26 (F F)	
(37.5:12.5 at.%)	Ν	4.005, 4.005, 4.088	07.465	1.50 (1-1)	
BTON:Al:Mg	$BaTa_{0.5}Al_{0.125}Mg_{0.375}O_2$	1 065. 1 065. 1 181	60 127	1 5 4 (Г Г)	
(12.5:37.5 at.%)	Ν	4.005, 4.005, 4.184	09.15/	1.54 (1-1)	

*M. Hojamberdiev, R. Vargas, Z.C. Kadirova, K. Kato, H. Sena, A.G. Krasnov, A. Yamakata, K. Teshima, M. Lerch, Unfolding the Role of *B* Site-Selective Doping of Aliovalent Cations on Enhancing Sacrificial Visible Light-Induced Photocatalytic H₂ and O₂ Evolution over BaTaO₂N, *ACS Catal.* **2022**, *12*, 1403–1414.

Model			$m_{\rm e}^*/m_0$	0	1	$m_{\rm h}*/m_0$			
	direction	Г→Х	Г→М	Γ→R	Г→Х	Г→М	Γ→R		
BTON (HSE12s)	calculation	0.363	0.449	0.374	0.535	0.238	0.233		
	average	0.395			0.335				
	direction	$\Gamma \rightarrow \lambda$		Г→М	М→Х	M→	Γ		
(50 at 9/)	calculation	0.30	5	0.324	1.017	1	.599		
(30 al. 70)	average		0.315		1.308				
DTONIMA	direction	Г→Х		Г→М	М→Х	Ν	<i>1</i> →Γ		
(50 at 9/)	calculation	0.320)	0.328	1.254	1	.492		
(30 al. 70)	average		0.324		1.373				
DTON: A1.Ma	direction		Y→S		Х→Г	Х	K→S		
DTON.AI.Mg	calculation	0.308			0.628 7.618				
(23.23 al.70)	average		0.308			4.123			
	direction	$\Gamma \rightarrow \lambda$		Г→М	Г→Х	Г→М	Г→Ζ		
(37.5.12.5 at %)	calculation	0.33	5	0.338	1.090	1.223	0.908		
(37.3.12.3 at.70)	average	0.336			1.074				
	direction	$\Gamma \rightarrow \lambda$		Г→М	Г→Х	Г→М	Г→Ζ		
$(12.5.27.5 \text{ at } \frac{9}{2})$	calculation	0.342	2	0.347	1.840	1.895	3.195		
(12.3.37.3 al./0)	average	0.345			2.310				

Table S2. Calculated effective masses of electrons and holes in pristine and (co)substituted BaTaO₂N models along specific directions in the reciprocal space.

Parameter/ Element	Ba	Та		0		N		Al	Mg
Electron affinities, eV*	-0.50	0.3	32	1.4	46	0.	07	0.46	-0.15
First ionization energies, eV*	5.20	7.8	39	13.	62	14	.53	5.99	7.65
Compound	BaTaO ₂ N	BaTa _{0.5} A	l _{0.5} O ₂ N	BaTa _{0.5} M	lg _{0.5} O ₂ N	BaTa _{0.5} Al ₀	_{0.25} Mg _{0.25} O ₂ N	$\begin{array}{c} BaTa_{0.5}Al_{0.375}Mg_{0.125}O_{2} \\ N \end{array}$	$\frac{BaTa_{0.5}Al_{0.125}Mg_{0.375}O_2}{N}$
Electronegativity of semiconductor, χ	5.254	5.1	29	5.2	07	5.1	68	5.148	5.187
Electronic transition type	direct	indirect	direct	indirect	direct	direct	direct	direct	direct
$E_{\rm g}$, eV	1.49	1.61	1.66	2.01	1.36	1.54	1.84	1.54	1.36
$E_{\rm CB}$, eV	0.01	-0.18	- 0.20	-0.30	- 0.03	-0.08	-0.25	-0.08	-0.03
$E_{\rm VB}$, eV	1.50	1.43	1.46	1.71	1.33	1.46	1.59	1.46	1.33

 Table S3. Details of the calculation of the band edge potentials by DFT.

*R.G. Pearson, Absolute Electronegativity and Hardness: Application to Inorganic Chemistry, Inorg. Chem. 27 (1988) 734-740.

Structures (adsorbate)	Mg,	Al,	$E_{\rm ads},$	Water:	Methanol:
	%	%	kcal·mol ^{−1}	dE_{ads}/dN_i ,	dE_{ads}/dN_i ,
				kcal·mol ^{−1}	kcal·mol ^{−1}
BaTaO ₂ N	5	0	-67.18	-2.26	
(water adsorption)	2.5	2.5	-68.79	-2.34	
	2.5	2.5	-68.95	-2.37	
	0	5	-71.10	-2.67	
	0	0	-65.92	-2.53	
	1.5	3.5	-69.57	-2.34	
	3.5	1.5	-67.49	-2.52	
BaTaO ₂ N	5	0	-73.16	-2.56	-5.23
(water-methanol adsorption)	2.5	2.5	-76.86	-2.49	-6.14
	0	5	-78.81	-2.69	-5.25
	0	0	-72.73	-2.29	-5.04
	2.5	2.5	-75.37	-2.33	-4.95
	1.5	3.5	-76.79	-2.58	-5.62
	3.5	1.5	-74.94	-2.41	-5.62

Table S4. Adsorption energies of water and methanol molecules on the $BaTaO_2N$ (110) surfaces with Al-, Mg-, and Al-Mg (co)substitution.

Figure S1. EDX spectra of BTON1 (a), BTON2 (b), BTON3 (c), BTON4 (d), BTON5 (e), and BTON6 (f).

Figure S2. Total and partial density of states (a) BTON [32], (b) BTON:Al (50 at.%), (c) BTON:Mg (50 at.%), (d) BTON:Al:Mg (25:25 at.%), (e) BTON:Al:Mg (37.5:12.5 at.%), and (f) BTON:Al:Mg (12.5:37.5 at.%). The Fermi level is set at 0 eV.

Figure S3. DFT-HSE12s-predicted band gap values of pristine and (co)substituted BaTaO₂N models as functions of Al and Mg contents.

Figure S4. Effect of aluminum substitution on adsorption energy of water and water+methanol molecules on the BaTaO₂N (110) surfaces.