Electronic Supplementary Material (ESI) for Materials Advances.
This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

ICHOR: A Modern Pipeline for Producing Gaussian Process
Regression Models for Atomistic Simulations

Matthew Burn and Paul Popelier *

Department of Chemistry, The University of Manchester, Manchester, M13 9PL, Britain

*To whom correspondence should be addressed:

Phone: +44 161 3064511. E-mail: pla@manchester.ac.uk

Table of Contents

1

8
9

ICHOR INTERFACE

1.1 TerRMINAL USerR INTERFACE (TUI)
1.2 CommAnD LINE INTERFACE (CLI)
1.3 LiIBRARY INTERFACE

EXTERNAL PROGRAM INTERFACES

2.1 MOLECULAR DYNAMICS SOFTWARE
211 CP2K
2.1.2 AMBER

2.1.3 TYCHE
2.2 QUANTUM CHEMISTRY PROGRAM INTERFACES

2.2.1 GAUSSIAN

2.2.2 PySCF
2.3 QUANTUM CHEMICAL TOPOLOGY INTERFACES

231 AIMAII

2.3.2 MORFI
2.4 FEREBUS

HIGH PERFORMANCE COMPUTING CLUSTER

1 BATCH SYSTEM INTERFACE
2 SUBMISSION SCRIPT

3 DATAFILES

4 ERROR HANDLING

5 SuBMISSION QUEUES

3.5.1 Hold Queue Wait
3.5.2 Submit On Compute
3.5.3 Drop Compute

MACHINES

4.1 ENVIRONMENT MODULES
4.2 NODE PRIVILEGES

4.3 PARALLEL ENVIRONMENTS
4.4 PRECOMPILED BINARIES

PER-VALUE
MODEL ANALYSIS

6.1 MODEL READING

6.2 S-CURVES

6.3 RMSE CuRVE
ANALYSIS TOOLS

7.1 GEOMETRY ANALYSIS

7.2 ROTATE-MoL

7.3 DL_FFLUX ANALYSIS
MULTIPOLE ROTATION

ATOMIC CONSTANTS

INTERFACE

0 00 NUIWw W

15

19
19

20
22

22

24
25

30

31
31
32
33
34

34
34
35

36

36
36
36
37

38
40

40
42
44

45
45

53
61
66

1 ICHOR Interface

ICHOR provides three interfaces:
e Terminal User Interface (TUl)
e Command Line Interface (CLI)
e Python Package (Library Interface)

The TUI is designed for the average user and provides a series of menus in order to provide the most
used ICHOR functionality in a manner that is an easy to use and to understand. The CLI provides access
to a select list of ICHOR functions to provide access to ICHOR’s functionality (when an interactive
terminal may not be available, i.e. in a bash script for use on a compute node in a HPC cluster. The
library interface is designed to provide all of ICHOR’s tools, which includes a variety of common tasks
in computational chemistry.

1.1 Terminal User Interface (TUI)

ICHOR’s TUI is based upon a simple text menu designed for high portability and minimal resource
usage. ICHOR’s main menu is invoked when running the ichor command if installed or when calling
python on the location of the ICHOR directory.

B e e s
ICHOR Main Menu
s s R S ST

Training Set Menu
sample Pool Menu
Validation Set Menu
Active Learning

Auto Run
Per-Value Auto Run

Custom PointsDirectory Menu
Analysis Menu

Tools Menu

Options Menu

Queues Menu

Ex1it

Figure S1. Screenshot of ICHOR”s default main menu.

ICHOR’s menu consists of a menu title followed by a series of options and messages, and is completed
with a prompt. The ICHOR prompt contains all the functionality one expects of a modern prompt
including history search, auto-completion and auto-complete suggestions based on the current input
using the “tab” character. The prompt also allows for shortcuts not observed in the current menu, which
is useful for bypassing submenus when performing common operations. Finding all options of a menu
can be accessed in the usual prompt manner using tab completion (i.e. double pressing the “tab” button).
The majority of main menu functions provides access to submenus that control specific ICHOR tasks,
such as job submission or model analysis.

HH R R R AR AR AR AR
TRAINING_SET Menu
FHAHH AR

Submit Points to Gaussian
Submit Points to
Make Models

[a] Auto-Run AIMALL

[f] Toggle Force
Force:

[b] Go Back

Figure S2. An example of a submenu for controlling the computation of the training
set.

The user controls the global parameters of the ICHOR TUI via a config file. The currently supported
config file formats are .properties and YAML. The .properties is the preferred choice due to its
simplicity. ICHOR treats global parameters as simple key value stores where each value has a type and
an optional range of values.

SYSTEM _NAME =
POINTS LOCATION =

ATMALL _E. 0AQ =

TRAINING_SET _METHOD =
TRAINING_POINTS =

SAMPLE_POINTS =

N_ITERATIONS =
POINTS_PER_ITERATION =

ACTIVE_ LEARNING METHOD

Figure S3. Example config.properties file for a paracetamol active learning run.

4

Internally, ICHOR converts all control parameters to the speficied type and checks if they are within
the bounds set by the developer. If the user makes an error such as misspelling a parameter or entering
an out-of-bounds value, an error message is displayed to the user when initialising the TUI application.

Problems Found:
1) 3 n setting found in config
Description: : N_ITERATONS

Solution: see documentation or check [o]ptions [settings] for full list of settings
Possible M ['N_ITERATIONS', 'POINTS PER _ITERATION', 'WARN_INTEGRATION_ERROR'

POINTS_PER_ITI ncorrect value

Description: =0

mu e
Solution: Consult documentation to check all Lues

HARAARR AR AR AR
ICHOR Main Menu
HHHHHHHHRHARAAARAAH

ing Set Menu
Pool Menu
tion Set Menu
Learning

Auto Run
p] Per-value Auto Run

TG =

irectory Menu

Figure S4. Screenshots showing (a) an example config file with errors in the
spelling of N_ITERATIONS, and incorrect values for the AIMALL_BOAQ and
POINTS_PER_ITERATION settings; (b) the example output from running ICHOR with the
example config file.

Figure S4 shows that, if ICHOR cannot find the specified parameter name, then the parameter in the
config file is assumed to be misspelled and several suggestions are given via the gestalt pattern matching
algorithm. Another common error is inputting an invalid value. Two cases are demonstrated in Figure
S4 whereby a parameter must be set to specified values only. For example, AIMALL BOAQ cannot
be set to the non-existing “gs70” of AIMAIL nor can the POINTS PER ITERATION parameter be
negative. Other checks include that specified files exist, that they are formatted correctly, and that the
shape of defined arrays are correct.

ICHOR’s TUI is aimed at the general ICHOR user and is therefore designed to provide access to most
of ICHOR’s utilities in such a way that will reduce user error.

1.2 Command Line Interface (CLI)

ICHOR’s CLI is designed for a more advanced user who may require the use of a specific [ICHOR
function in a non-interactive shell. The main reason for using the ICHOR CLI is when running on a
HPC cluster compute node where an interactive terminal session is often unavailable. It is often the case
that such a node will be a non-interactive session and therefore the user is unable to navigate the various
options in a TUI menu. All ICHOR CLI functions may be viewed via the help menu.

(base) [mfbx4mbo@ffluxlab ~] ichor -h
usage: ichor [-h] [-c CONFIG_FILE] [-f func [arg ...]] [-u UID] [-ar

ICHOR: A training suite for producing atomistic GPR models

optlonal arguments:

-h, --help show this help message and exit

-C CONFIG_FILE, - = CONFIG_FILE
Namﬂ of Config File for ICHOR

-f func [arg ...], --fu func [arg ...]
‘call ichor f 1 with args, allc functions:
[log_time, active_learning, collatﬂ model _log,
collate_models, make_models, move_models,
submit_points_directory_to_gaussian,
submit_points_directory_to_pyscf,
submit_points_directory_to_morfi, rerun_gaussian,
scrub_gaussian, rerun_aimall, scrub_aimall,
submit_points_directory to_aimall,
check_aimall_output, make_sets, print_completed,
run_dlpoly_geometry_optimisations,
get_dlpoly_energies,
submit_final geometry to gaussian,
copy_aimall wfn to point directory, mdcrd_to xyz,
tyche _to_xyz, add dispersion_to_aimall, cp2k to_xyz,
set_points_location, convert_opt wfn_to xyz,
geometry_analysis, rotate _mol]
Unique Identifier For ichor Jobs To Write To
Flag used to specify ichor is running in auto-run mode

Figure S5. ICHOR help dialogue.

Most ICHOR options are instance-specific flags such as specifying a config file via the -c flag and
specifying a unique instance id via the -u flag. Internally, ICHOR developers define external functions
allowing the function to be called via the -F flag in the CLI. ICHOR provides a help utility for each
external function providing a list of function parameters with the function’s documentation, if available.

(base) [mfbx4mbo@ffluxlab ~] ichor -f help submit _points_directory_ to_gaussian
Help For Function: submit_points_directory_to_gaussian

Parameter List:
tory | type: Path
rite_existing | default value: True | type: bool
ce | type: bool

n Documentation:
that writes out .gjf files from .xyz files that are in each directory and _
calls submit_gjfs which submits all .gjf files in a directory to Gaussian. Gaussian outputs .wfn files.

:param directory: A Path object which is the path of the directory (commonly traning set path, sample pool path, etc.).
rwrite_existing: Whether to overwrite existing gjf files in a directory. Default is True.
alse, then any existing in the directory will not be overwritten
|thuq they would not be using the Gaussian settings from GLOBALS.)

Figure S6. Example ICHOR help dialogue for running the
submit _points_directory_to gaussian external function.

As mentioned previously, the CLI is designed for when an interactive TUI approach would not be
appropriate. Users may request extra functionality to be made available via the CLI if the functionality
is not yet accessible from the CLI and is not capable of interfacing ICHOR via the library interface.

6

1.3 Library Interface

ICHOR has been designed in such a way that it is accessible both as an application and as a library.
Using setuptools, ICHOR is accessible via a pip installable python package. The library interface
opens up all ICHOR functions and classes for developers to use freely allowing for easy automation of
computational chemistry tasks if the specific functionality cannot be found by neither the TUI nor the
CLI. The library interface is designed for the most advanced ICHOR users providing access to program
interfaces, analysis and HPC automation tools allowing for high level control over common
computational chemistry tasks. Figure S7 shows an example of a script using the ICHOR library

interface.

ichor.files PointsDirectory
ichor.models Models
ichor.common.types DictList

models
points

ipoint
props

true)
pred =Di

prop props:
p = models[prop].pi (points[ipoint-1].features)
t = points[ipoint ty(prop)

print(
atom, val
truelatom]

L]
pred[atom] [platom] [prop]l]
print{

ichor.multipoles dipole_spherical_ to_cartesian
numpy np
ichor.constants bohr2ang

print(
print(

atom, vals

§ = Np.arra
print{atom, vals , herical to_cartesian(vals , wals
rint()
)
atom, vals
vals
_spherical_to_cartesian(vals[1], vals

, vals)*bahr2ang)

, vals }*bohr2ang)

Figure S7. Example script utilising the ICHOR library interface to check the true
versus predicted values for the atomic charges and dipole moments of a specific
point in a validation set before converting the dipole moments from the standard
spherical representation to the Cartesian form, and converting the units of the

dipole moments from eA to eBohr.

It is worth noting here that ICHOR has a sophisticated implementation of file and directory handling
designed to spend as little time in I/O as possible. ICHOR is designed to efficiently work with a large
volume of files, for example, when working with training or validation sets. When creating the variable
points(Figure S7) it would be wasteful to read the entire validation set because the intent of the code
is only to access the true values of a single point out of the validation set. This intent cannot be known
ahead of time, which is why ICHOR implements lazy file reading whereby only the files that are
necessary will be read, in this case the files containing the multipole moment data of point 335 (ipoint
in Figure S7) and the geometry of point 335. It is also true that accessing the multipole data is a
computationally intensive task because multipoles are required to be converted and rotated as is
described in a later section. For such files, ICHOR implements a caching function such that each time
the property is requested, it need not be recalculated but instead read straight from the cache.

2 External Program Interfaces
2.1 Molecular Dynamics Software
2.1.1 CP2K

ICHOR implements an interface to the ab initio molecular dynamics (AIMD) simulation package CP2K
providing the user with simple tools to control the running of the package. CP2K is an open-source
AIMD package implementing a wide variety of quantum chemistry (QC) methods.

Table S1. Parameters associated with the execution of a CP2K job.

Parameter Description Default Value
CP2K _NCORES Number of cores to use to run CP2K 8

CP2K _INPUT Input file to use for initial geometry

CP2K TEMPERATURE Temperature to run CP2K at 300 K

CP2K STEPS How many timesteps to run CP2K for 10,000
CP2K_TIMESTEP Timestep length in fs 1.0 fs
CP2K_METHOD QC Method to use for AIMD simulation BLYP

CP2K BASIS SET Basis set to use for AIMD simulation 6-31G
CP2K_DATA DIR The location of the CP2K data directory

containing data files such as the basis sets.
ICHOR automatically finds this location if
the machine is known.

All parameters may be set via the config file, then edited and run using the CP2K submenu shown below
in Figure S8. ICHOR then generates the CP2K input file and submission script before submitting to the
HPC cluster to execute on a compute node, shown below in Code S1.

AR
CP2K Menu
HHBHBHAU BB RUH

Run CP2K

[1] Set input file
[t] Set Temperature
[n] Set number of timesteps

Input File: paracetamol.xyz
Temperature: 300 K
Number of Timesteps: 10,000

[b] Go Back
Exit

>>I

Figure S8. Example of a CP2K submenu.

Code S1. Example CP2K input file generated for a paracetamol 300 K AIMD simulation
&GLOBAL
PROJECT PARACETAMOL
RUN_TYPE MD

TOLEVEL LOW
&END GLOBAL

&FORCE_EVAL
METHOD Quickstep
&DFT
BASIS SET _FILE NAME /opt/cp2k/6.1.0/data/BASIS_SET
POTENTIAL_FILE NAME /opt/cp2k/6.1.0/data/GTH_POTENTIALS

CHARGE ©
MULTIPLICITY 1

&MGRID
CUTOFF [Ry] 400
&END MGRID

&QS

METHOD GPW
EPS_DEFAULT 1.0E-10
EXTRAPOLATION ASPC

&END QS

&POISSON
PERIODIC XYZ
POISSON_SOLVER PERIODIC
&END POISSON

&SCF

SCF_GUESS ATOMIC

MAX_SCF 30

EPS_SCF 1.0E-6

&0T
PRECONDITIONER FULL_SINGLE_INVERSE
MINIMIZER DIIS

&END OT

&UTER_SCF ! repeat the inner SCF cycle 10 times
MAX_SCF 10
EPS_SCF 1.0E-6 ! must match the above

&END

&PRINT
&RESTART OFF
&END

&END PRINT

&END SCF

! specify the exchange and correlation treatment
&XC
&XC_FUNCTIONAL BLYP
&END XC_FUNCTIONAL
I adding Grimme's D3 correction (by default without C9 terms)
&VDW_POTENTIAL OFF
POTENTIAL_TYPE PAIR_POTENTIAL
&PAIR_POTENTIAL
PARAMETER_FILE_NAME /opt/cp2k/6.1.0/data/dftd3.dat
TYPE DFTD3
REFERENCE_FUNCTIONAL BLYP
R_CUTOFF [angstrom] 16
&END PAIR_POTENTIAL
&END VDW_POTENTIAL

10

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

&END XC
&END DFT

| description of the system
&SUBSYS
&CELL

ABC [angstrom] 25.0 25.0 25.0

&END CELL

! atom coordinates can be in
I or provided as an external
&COORD

C -1.38560834 Q.
C -2.52666419 -0.
C -2.41236928 -1
C -1.18720485 -2.
C -0.04862960 -1.
C -0.13407250 Q.
H -3.48252883 Q.
0] -3.48567490 -2.
H -1.10644072 -3.
H 0.89627539 -1.
H -1.48804768 1.
N 0.98753667 Q.
C 2.30318451 (%]
H 0.81371650 1
0] 2.70539466 -0
C 3.26747056 1
H 3.25502871 1
H 4.27853519 1
H 2.99545989 2
H -4.24536121 -1
&END COORD

the &COORD section,

file.

72661988
04742133

.43117557

04836114
27341805
12044156
44418211
22483703
13096919
79073203
80826856
96801054

.58452382
.95621785
.50846074
.67956983
.80133223
.40340843
.62216457
.65936431

! keep atoms away from box borders,

! a requirement for the wavelet Poisson solver

&TOPOLOGY
&CENTER_COORDINATES
&END

&END TOPOLOGY

&KIND C
BASIS SET 6-31G*

OO OO

.00292676
.23694580
.29038093
.07946452
.15841538
.17620361
.38604681
.56333636
.12055897
.29208601
.02171883
.27825986
.46843260
.14798346
.84759059
.09012606
.99748830
.40187161
.57130942
.77684901

11

POTENTIAL
&END KIND
&KIND C

BASIS_SET

POTENTIAL
&END KIND
&KIND C

BASIS_SET

POTENTIAL
&END KIND
&KIND C

BASIS_SET

POTENTIAL
&END KIND
&KIND C

BASIS_SET

POTENTIAL
&END KIND
&KIND C

BASIS_SET

POTENTIAL
&END KIND
&KIND H

BASIS_SET

POTENTIAL
&END KIND
&KIND O

BASIS_SET

POTENTIAL
&END KIND
&KIND H

BASIS_SET

POTENTIAL
&END KIND
&KIND H

BASIS_SET

POTENTIAL
&END KIND
&KIND H

BASIS_SET

POTENTIAL
&END KIND
&KIND N

GTH-BLYP-g4

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-g6

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-q1

12

BASIS_ SET
POTENTIAL
&END KIND
&KIND C
BASIS_ SET
POTENTIAL
&END KIND
&KIND H
BASIS_SET
POTENTIAL
&END KIND
&KIND O
BASIS_SET
POTENTIAL
&END KIND
&KIND C
BASIS_SET
POTENTIAL
&END KIND
&KIND H
BASIS_SET
POTENTIAL
&END KIND
&KIND H
BASIS_SET
POTENTIAL
&END KIND
&KIND H
BASIS_SET
POTENTIAL
&END KIND
&KIND H
BASIS_SET
POTENTIAL
&END KIND
&END SUBSYS
&END FORCE_EVAL

! how to propagate the system, selection via RUN_TYPE in the &GLOBAL

section
&MOTION
&GEO_OPT

6-31G*
GTH-BLYP-g5

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-g6

6-31G*
GTH-BLYP-q4

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-q1

6-31G*
GTH-BLYP-q1

OPTIMIZER LBFGS ! Good choice for 'small' systems (use LBFGS for
large systems)
MAX_ITER 100
MAX_DR [bohr] ©.003 ! adjust target as needed
&BFGS
&END BFGS
&END GEO_OPT
&MD
ENSEMBLE NVT ! sampling the canonical ensemble, accurate
properties might need NVE
TEMPERATURE [K] 300
TIMESTEP [fs] 1.0
STEPS 10000
&THERMOSTAT
TYPE NOSE
REGION GLOBAL
&NOSE
TIMECON 50.
&END NOSE
&END THERMOSTAT
&END MD

&PRINT
&TRAJECTORY
&EACH
MD 1
&END EACH
&END TRAJECTORY
&VELOCITIES OFF
&END VELOCITIES
&FORCES OFF
&END FORCES
&RESTART OFF
&END RESTART
&RESTART_HISTORY OFF
&END RESTART_HISTORY
&END PRINT
&END MOTION

Providing an interface to generate the CP2K input enables inexperienced CP2K users to easily set up a
simulation and be productive without much background knowledge necessary. ICHOR automatically
defines each atom type for the geometry from the atomic numbers, QC method and basis set defined by
the user.

14

2.1.2 AMBER

For larger simulations AIMD techniques become unfeasible thus cajoling one to use classical MD
techniques. ICHOR implements an AMBER interface, similar to the CP2K interface shown in the
previous section.

Table S2. Parameters used to control AMBER simulations in ICHOR.

Parameter Description Default Value
AMBER NCORES Number of cores to use to run AMBER 1

AMBER TEMPERATURE Temperature to run AMBER at 300 K
AMBER STEPS How many timesteps to run AMBER for 100,000
AMBER TIMESTEP Timestep length in ps 0.001 ps

AMBER LN GAMMA Log-Gamma parameter used for the Langevin 0.7
thermostat

Much like CP2K, AMBER may be accessed and executed from the MD tools AMBER submenu.

HIHHHHHHHHH
Amber Menu
HABHBHBHAHHIHE

Run Amber

[1] Set input file

[t] Set Temperature

[n] Set number of timesteps

[e] Set print every n timesteps

Input File: paracetamol.xyz
Temperature: 300 K

Number of Timesteps: 100,000
Write Output Every '1' timestep(s)

[b] Go Back
Exit

= |

Figure S9. Example AMBER submenu.

Running a classical MD simulation is a little more involved than an AIMD simulation because the atom
type selection is defined not only by atomic number but also by atomic environment. ICHOR
implements a method of generating a .mol2 file for any given geometry, which determines automatically
atom and bond types defined by the SYBYL MOL2 format specification.

15

Code S2. Example MOL2 paracetamol file generated by ICHOR from initial geometry

@<TRIPOS>MOLECULE
paracetamol
20 20 1 0 0
SMALL
none
@<TRIPOS>ATOM
1C -2.1990 3.2770 0.6990 ca 1 para 0.000000
2 C1 -3.3400 2.5030 0.4650 ca 1 para 0.000000
3 C2 -3.2260 1.1190 0.4120 ca 1 para 0.000000
4 C3 -2.0010 0.5020 0.6230 ca 1 para 0.000000
5 C4 -0.8620 1.2770 0.8600 ca 1 para 0.000000
6 C5 -0.9480 2.6710 0.8780 ca 1 para 0.000000
7 H -4.2960 2.9950 0.3160 ha 1 para 0.000000
8 0 -4.2990 0.3250 0.1390 oh 1 para 0.000000
9 H1 -1.9200 -0.5810 0.5810 ha 1 para 0.000000
10 H2 ©0.0830 0.7600 0.9940 ha 1 para 0.000000
11 H3 -2.3020 4.3590 0.7240 ha 1 para 0.000000
12 N 0.1740 3.5180 0.9800 ns 1 para 0.000000
13 C6 1.4900 3.1350 1.1700 c 1 para 0.000000
14 H4 ©.0000 4.5070 0.8500 hn 1 para 0.000000
15 01 1.8920 2.0420 1.5500 o 1 para 0.000000
16 C7 2.4540 4.2300 0.7920 c3 1 para 0.000000
17 H5 2.4410 4.3520 -0.2960 hc 1 para 0.000000
18 H6 3.4650 3.9540 1.1040 hc 1 para 0.000000
19 H7 2.1820 5.1720 1.2730 hc 1 para 0.000000
20 H8 -5.0590 0.8910 -0.0750 ho 1 para 0.000000
@<TRIPOS>BOND
1 1 2 ar
2 1 6 ar
3 1 11 1
4 2 3 ar
5 2 71
6 3 4 ar
7 3 81
8 4 5 ar
9 4 91
10 5 6 ar
11 5 10 1
12 6 12 1
13 8 20 1
14 12 13 1
15 12 14 1

16

16 13 15
17 13 16
18 16 17
19 16 18
20 16 19

R R R RN

With the MOL2 file, ICHOR generates a tleap and md.in file in order to generate the necessary files to
run AMBER.

Code S3. Example tleap file for paracetamol input

source leaprc.gaff2

mol = loadmol2 PARACETAMOL.mol2

loadamberparams PARACETAMOL.frcmod

saveamberparm mol PARACETAMOL.prmtop PARACETAMOL.inpcrd
quit

Code S4. Example MD input file for production AMBER run.

Production

&cntrl
imin=0,
ntx=1,
irest=0,
nstlim=100000,
dt=0.001,
ntf=1,
ntc=1,
temp0=300,
ntpr=1,
ntwx=1,
ntwv=0,
ntwf=0,
ioutfm=0,
cut=999.09,
ntb=0,
ntp=0,
ntt=3,
gamma_1n=0.7,
tempi=0.0,
ig=-1

/

ICHOR defaults to running AMBER as a single molecule in vacuum using GAFF parameters resulting
in the absenceof periodic boundary conditions and a large cutoff value. ICHOR’s AMBER interface is
aimed at novice AMBER users to provide the tools to run a simple MD simulations. The outputs from

17

more advanced tailored AMBER simulations may also be used by ICHOR through the
mdcrd_to_trajectory utility function in the CLIL

2.1.3 TYCHE

Although not MD simulation software, TYCHE is the final external program used by ICHOR to
generate input coordinates. TYCHE samples the normal modes of a system through the derivative of
the molecular wavefunction and then performs Boltzmann sampling from each normal mode to produce
molecular configurations. Similarly to the MD methods, the molecular distortions of the TY CHE output
may be controlled via a temperature parameter.

Table S3. Parameters used to run Tyche.

Parameter Description Default Value
TYCHE NCORES Number of cores to use to run TYCHE 1

TYCHE TEMPERATURE Temperature to run TYCHE at 300K
TYCHE STEPS How many timesteps to run TYCHE for 10,000
TYCHE LOCATION The location of the TYCHE executable, this

parameter is assigned automatically if
ICHOR is able to identify the machine

In order to run TYCHE, three files are required: a wavefunction file, a wavefunction (second)
derivatives file and a TYCHE parameter file called freq.param. The wavefunction and derivative
files are generated by running the geometry through a GAUSSIAN frequency calculation with the
output=wfn and punch=derivatives keywords. The third file (Freq.param) specifies the control
parameters to run TYCHE.

Code S5. Example freq.param input file for a TYCHE paracetamol run

Sampling : Vibrate
Name : PARACETAMOL
Temperature : 450
Nseed 01
Nsample : 9999
Natoms : 20
Nsteps : 100

GJF > nosymm
Interactions : 1-4
WhichModes : All
MaxModes : 100
MCTemp : 300

18

2.2 Quantum Chemistry Program Interfaces

Because ICHOR produces atomistic GPR models using quantum chemical topology (QCT) data, a
wavefunction is required to pass onto the QCT program that performs the atomic partitioning (AIMALL
or MORFI). A quantum chemistry (QC) program calculates the wavefunction of a geometry. At the
time of writing, ICHOR interfaces with two such QC programs: GAUSSIAN and PySCF (via the
PANDORA interface).

2.2.1 GAUSSIAN

GAUSSIAN is the primary QC program used by ICHOR to produce wavefunctions. To run a calculation
through GAUSSIAN, a GAUSSIAN input file (- gj) is required. For consistent models, it is necessary
that all QC calculations are identical in method. ICHOR ensures this requirement by rewriting each
input file with the specified GAUSSIAN parameters.

Table S4. Parameters used to generate Gaussian input Files.

Parameter Description Default Value
GAUSSIAN NCORES Number of cores to use to run GAUSSIAN 2
GAUSSIAN_MEMORY LIMIT Memory limit for Gaussian jobs 1GB
METHOD QC method used to run Gaussian jobs B3LYP
BASIS SET Basis set used to run Gaussian jobs 6-31+G(d,p)
KEYWORDS The keywords used to run Gaussian jobs nosymm

GAUSSIAN input files are then written in a standard format ensuring a wavefunction will be outputted
in the correct location.

Code S6. Example Gaussian input file for a paracetamol geometry

%nproc=2
%mem=1GB
#p B3LYP/6-31+g(d,p) nosymm output=wfn

PARACETAMOLOOO1

01

c 0.11335000 -1.23865000 0.87480000
c 0.85535000 -1.22565000 2.05680000
C 1.17835000 0.03635000 2.63680000

19

I T T ITOOINZ2ITITITOITNDONOON

.93835000
.28435000
.09765000
.13535000
.77135000
.26735000
.07535000
.29565000
.66565000
.00165000
.76565000
.94765000
.42965000
.67265000
.47265000
.39965000
.12935000

.27235000
.20635000
.04565000
.09865000
.02835000
.21335000
.12335000
.15465000
.15765000
.69735000
.05365000
.91235000
.02765000
.31235000
. 20035000
-1.
-0.

12465000
87565000

.95980000
.69580000
.13580000
.60580000
. 89480000
.30380000
.12080000
.51080000
.17120000
.19820000
.39520000
.12820000
.52420000
.27520000
.71420000
.42020000
.93080000

TRAINING_SET/PARACETAMOLOOO1/PARACETAMOLOOOL . wfn

2.2.2 PySCF

It is not practical to retrieve the two-particle-density matrix (2PDM) from GAUSSIAN. However, the
2PDM is retrieved from PySCF, which then enables the calculation of atomic properties related to
dispersion. ICHOR interfaces with PySCF via an in-house software package named PANDORA, which
controls the execution of PySCF and that of the in-house QCT program MORFI. The interface to
PANDORA is similar to the interface of GAUSSIAN whereby PANDORA is run via an input file and

controlled via parameters.

Table S5. Parameters used to control PySCF via PANDORA.

Parameter Description Default Value
PYSCF NCORES Number of cores to use to run PySCF 2

METHOD PySCF QC Method CCSD
KEYWORDS PySCF Basis Set 6-31G

Code S7. Example of a PANDORA input file for paracetamol

{

20

VWoOoONOUVT A~ WN

A PP WWWWWWWWWWNNNMNMNNNMNMNMNNMNMNNNNRRRERPRPRRREPRRR
NFRPOCVOVONOCUUPDPWNREROOVLONOUPAPWDNREROOVONOCUDWNEREREO®

"system": {
"name": "paracetamol",
"geometry": [
["C", ©.11335000, -1.

Lo T e T e Y e B B e T s T e B s B s T e T e B s Y s B e Y e O e B e B |
IIIIﬁOIﬁZ:EfIIOIﬁﬁﬁﬁﬁ
-

1
[

-

-

3
O 0O r OO

-

LF
|
()

e
=

-
=

-
=

T
[

LT
1
o]

LT
1
=

e
|
()

JF
1
(o]

LT
1
=

e
1
()

L
1
N

.
1
=

-
N

"pandora": {

"pyscf": {

"ccsdmod": "ccsdM"
"method": "ccsd",

"basis": "unc-6-31g

"morfi": {

"grid": {
"radial": 10.0,
"angular": 5,
"radial_h": 8.0,
"angular_h": 5

.85535000, -1.
.17835000, ©.
.93835000, 1.
.28435000, 1.
.09765000, -0.
.13535000, -2.
.77135000, ©.
.26735000, 2.
.07535000, 2.
.29565000, -2.
.66565000, -0.
.00165000, ©.
.76565000, -1.
.94765000, 1.
.42965000, -0.
.67265000, ©.
.47265000, ©.
.39965000, -1.
.12935000, -0.

23865000,
22565000,
03635000,
27235000,
20635000,
04565000,
09865000,
02835000,
21335000,
12335000,
15465000,
15765000, -1

O O N WNOOFRPR NMNMNDNMNDO

69735000, -2.
05365000, -1.
91235000, -2.
02765000, -3.
31235000, -4.
20035000, -3.
12465000, -3.
87565000, 4.

.874800001],
.056800001],
.636800001],
.959800001],
.695800001],
.135800001],
.605800001],
.894800001],
.303800001],
.120800001],
.510800001],
.171200001,

198200001,
395200001,
128200007,
524200001,
275200001,
714200007,
420200001,
03080000]

21

2.3 Quantum Chemical Topology Interfaces

To calculate the atomic properties to input to the GPR model, the wavefunction must be partitioned into
quantum topological atomic and their properties computed by a quantum chemical topology (QCT)
program. To accompany the two QC programs shown in the previous section, [CHOR interfaces with
two QCT programs: AIMALII and the in-house QCT program MORFI (via the PANDORA Interface).

2.3.1 AIMAI

AIMALII is the primary route for partitioning wavefunctions into quantum topological atoms. At the time
of writing, it calculates all atomic properties except for the correlation (dispersion) energies (which is
calculated using MORFI). AIMAII is a powerful program that takes a wavefunction outputted from
GAUSSIAN or PySCF in the PROAIM format and partitions the wavefunction into atomic properties.
Similarly to the other external programs ICHOR that interfaces with, the execution of AIMAII is
controlled using global parameters. AIMALII is a mature, well developed QCT software package, which
requires no extra input files from ICHOR other than the specification of certain control parameters in
the wavefunction file. The execution of AIMAII is performed through command line parameters
controlled by the parameters shown in Table S6. ICHOR then reads the atomic properties from the
AIMALII integration output files (. int) providing the atomic properties for use within ICHOR, to
employ for the creation of models and for model analysis.

Table S6. Parameters used to control the execution of AIMAIL.

Parameter Description Default Value
AIMALL NCORES Number of cores to use to run AIMAIl 2
AIMALL ENCOMP Determines which energy components 3
to calculate
AIMALL BOAQ Sets basin quadrature to use during gs20
integration
AIMALL TASMESH Inter atomic surface mesh used during fine
integration
AIMALL BIM Basin integration method auto
AIMALL CAPTURE Determines Promega capture method auto
AIMALL EHREN Determines how to calculate Ehrenfest 0
Forces
AIMALL FEYNMAN Determines whether to calculate False

Feynman Forces

22

AIMALL TASPROPS

AIMALL MAGPROPS

AIMALL SOURCE

AIMALL TASWRITE

AIMALL ATIDSPROPS

AIMALL WARN

AIMALL_SCP

AIMALL DELMOG

AIMALL SKIPINT

AIMALL F2W

AIMALL F2WONLY

AIMALL MIR

AIMALL _CPCONN

AIMALL INTVEEAA

AIMALL ATLAPRHOCPS

Specifies whether to calculate inter
atomic surface properties

Determines method to use to calculate
magnetic properties

Determines whether to calculate atomic
source contributions

Specifies whether to write inter atomic
surface files

Controls calculation of atomic

isodensity surface properties
Output AIMAIl warning messages

Determines how much progress is
outputted to the console

Specifies whether to delete the aomtic
mog files

Specifies whether to atomic

integrations

skip[

Controls output format when converting
formatted check file to wavefunction

Controls ~ whether to continue
calculation after converting formatted
check file

Sets maximum atomic integration
radius (negative value indicates auto
determination)

Controls the intensity of the critical
point connectivity search

Controls which algorithm to use for
Vee(A,A) calculations

locate and
of the

Controls whether to
characterise critical points
laplacian of Rho

True

none

False

False

0.001

True

some

True

False

wix

False

-1.0

moderate

new

False

23

AIMALL WSP

AIMALL_SHM

AIMALL MAXMEM

AIMALL VERIFYW

AIMALL SAW

AIMALL AUTONNACPS

Determines whether to write molecular
graph

Controls which spherical harmonic
moments to output

Maximum memory (MB) that may be
used by AIMAII

Controls ~ whether to perform
verification on inputted wavefunction

Show atomic windows

Controls automatic critical point search

True

2400

yes

False

True

2.3.2 MORFI

The dispersion energy (i.e. correlation energy from CCSD) requires the use of the in-house QCT
program MORFI. Much like PySCF, MORFI is interfaced via the in-house software package
PANDORA due to the complexity of setting up a MORFI calculation. MORFI is a parallellised
FORTRAN code requiring recompilation for each specific MORFI run. This setup and compilation is
handled by PANDORA and controlled by ICHOR through the use of the PANDORA input file shown
in Code S7 and a set of control parameters.

Table S7. Parameters used for running MORFI via the PANDORA interface.

Parameter

Description

Default Value

MORFI_NCORES

PANDORA_ CCSDMOD

MORFI_RADIAL

MORFI_ANGULAR

MORFI RADIAL H

MORFI_ANGULAR_H

Number of cores to use to run MORFI

4

Specifies the CCSD dispersion correction ccsdM

modification function

Sets the number of radial points to use inthe 10.0

atomic integration

Sets the number of angular points to use in 5

the atomic integration

Sets the number of radial points to use for 5

hydrogen atoms in the atomic integration

Sets the number of angular points to use for 8.0

hydrogen atoms in the atomic integration

24

ICHOR then reads the MORFT output file (-mout), allowing ICHOR to access the atomic integration
results and dispersion energy terms for combination with the AIMAIl atomic properties. When
computing the IQA energy from a CCSD wavefunction using AIMALII, the Miiller dispersion correction
is applied, which needs to be accounted for when computing the dispersion energy with MORFI.
Removing the Hartree Fock energy contribution of the CCSD energy results in a smaller energy. The
integration of this smaller energy is accurate using only a (very) small integration grid. This advantage
drastically decreases the amount of time it takes to run MORFI. Both options (ccsdHF and ccsdM) are
provided to ICHOR through the PANDORA CCSDMOD parameter. Table S8 summarises .

Table S8. PANDORA_CCSDMOD parameter options.

Parameter Description

cesd No modification to the CCSD energy

ccsdHF CCSD energy with the Hartree Fock energy contribution removed
ccsdM CCSD energy with the Hartree Fock and Miiller correction

contributions removed

24 FEREBUS

ICHOR uses an external program in order to perform Gaussian process regression (GPR). ICHOR
allows for easy replacement of the GPR implementation without having to modify the ICHOR source.
The GPR engine of choice is currently the in-house program FEREBUS. FEREBUS defines a standard
input and output file format to ensure that, regardless of the GPR implementation, [CHOR will be able
to both produce models with the GPR engine and interpret the models produced by it.

FEREBUS requires two input files: a training set and an input configuration file. The training set file is
a comma-separated value (. csv) file consisting of input features and output properties with a header to
label each value type. The FEREBUS configuration file uses the TOML file format to define the
parameters used to optimise the GPR model.

Code S8. Example of a FEREBUS configuration file

[system]

name = "METHANOL"
natoms = 6

atoms = [

{name="C1", alf=[1, 2, 3]}
]

properties = ["iqa"]

25

[model]

mean = "constant"
optimiser = "pso"
kernel = "k1*k2"
likelihood = "marginal”
[optimiser]

search_min = 0.0
search_max = 3.0

[optimiser.pso]

swarm_size = 50

iterations = 1000

inertia_weight = 0.729
cognitive_learning rate = 1.494
social_learning_rate = 1.494
stopping_criteria="relative_change"

[optimiser.pso.relative_change]
tolerance=1e-08
stall_iterations=50

[kernels.k1]
type = "rbf"
active_dimensions

[1, 2, 3, 4, 5, 7, 8, 10, 11]

[kernels.k2]
type = "periodic"
active_dimensions = [6, 9, 12]

The TOML file format provides an unambiguous, simple format for specifying execution parameters.
Although there exists a Python implementation for serializing and deserialising the TOML file format,
one of ICHOR’s design requirements is to be highly portable and therefore have the fewest
dependencies as possible. At the time of writing, the usage of the TOML format in ICHOR only extends
to the serialisation of the FEREBUS config parameters as seen above in Code S8. Therefore the use of
the standard implementation for serialising and deserialising TOML is not necessary. In other words,
ICHOR does not need to implement the entire TOML specification and therefore does not need an
additional dependency to do so.

Much like other external programs, the user is able to specify the FEREBUS optimisation settings via
a set of control parameters.

26

Table S9. Parameters used to control the execution of FEREBUS.

Parameter Description Default Value

FEREBUS NCORES Number of cores to use to run 4
FEREBUS

FEREBUS SWARM SIZE Number of particles in PSO 50
swarm

FEREBUS NUGGET Sets initial nugget parameter ~ 1.0x1071°

FEREBUS THETA MIN Minimum value for theta 0.0
initialisation

FEREBUS THETA MAX Maximum value for theta 5
initialisation

FEREBUS INERTIA WEIGHT Specifies inertia weight for 0.729
PSO

FEREBUS COGNITIVE LEARNING RATE Specifies cognitive learning 1.494
rate for PSO

FEREBUS SOCIAL LEARNING RATE Specifies social learning rate 1.494
for PSO

FEREBUS MEAN Specifies mean function to use constant

FEREBUS OPTIMISATION Specifies optimisation method PSO
to use

FEREBUS TOLERANCE Specifies tolerance parameter 1.0x10%
used in PSO relative change
stopping criterion

FEREBUS STALL ITERATIONS Specifies the number of stall 50
itertations used in PSO relative
change stopping criterion

FEREBUS MAX ITERATION Specifies the maximum 1000

number of PSO iterations

FEREBUS outputs a model file detailing the exact parameters and data used to generate the model as
well as the optimised hyperparameters to be used for predictions using the model.

27

Code S9. Example of a FEREBUS model file.

[metadata]

program ferebus

version 7.2.0

nugget .1000000000000VOOE-09
likelihood 348.9145663746718
method = B3LYP

basis-set = 6-31+g(d,p)

H HHFHHEH

[system]

name METHANOL
atom C1
property iqa
ALF 1 3 2

[dimensions]

number_of_atoms 6

number_of_ features 12
number_of_training points 10

[mean]
type constant
value -38.04872095788889

[kernels]
number_of_kernels 1
composition k1*k2

[kernel.k1]

type rbf

number_of_dimensions 9

active dimensions 1 2 345 7 8 10 11

lengthscale 0.32096237 0.18393264 0.99397568 0.5876017 ©.48725134
0.90065895 0.46908177 0.4205679 0©.75621913

[kernel.k2]

type rbf

number_of_dimensions 3

active _dimensions 6 9 12

lengthscale 0.14463587 0.02498353 0.43328024

[training_data]

28

units.x bohr bohr radians bohr radians radians bohr radians radians
bohr radians radians

units.y Ha

scaling.x none

scaling.y none

[training_data.x]

2.85064 2.04588 2.03424 2.09898 2.55388 -1.82680 2.12218 .64684 -
2.11206 3.85470 1.09976 -.00321
2.70755 2.02730 1.94060 2.14570 2.52306 -2.08213 2.15295 .55709 -
2.25723 3.82563 1.09486 -.04654
2.79929 2.11869 1.92634 2.13477 2.67195 -2.19195 2.07375 .71118 -
2.16350 3.75194 1.09568 .125862
2.73129 2.09673 1.98250 2.06029 2.59495 -2.13244 2.06885 .64671 -
2.29471 3.68825 1.12487 .277844
2.73095 2.09482 2.06995 2.06514 2.51628 -2.17765 1.94543 .70285 -
2.12713 3.62280 1.05668 .057452
2.69062 2.12511 1.97101 2.07515 2.61698 -2.08392 2.29233 .64708 -
2.39057 3.78873 1.15716 .280104
2.70905 2.08496 2.17988 2.08824 2.53619 -2.00574 2.02610 .67640 -
2.21704 3.93721 1.23008 .330925
2.73706 2.08279 1.85823 2.07297 2.74731 -2.13072 2.15101 .76038 -
2.24995 3.73374 1.05744 .047668
2.77127 2.17498 1.97612 2.10017 2.65806 -2.18309 2.05554 .79270 -
2.20301 3.62161 1.02148 .004557
2.72609 2.16825 1.88322 2.09059 2.54924 -2.28730 2.08369 .65725 -
2.23212 3.58900 1.45655 .541989

[training_data.y]
-38.05544
-38.04779
-38.05431
-38.04663
-38.03974
-38.04674
-38.04144
-38.05264
-38.05041
-38.04711

[weights]
-2594.2461
-7982.0474

29

-127.94520
-776.37281
57.2102186
-11.711176
169.110913
11088.8747
178.083364

ICHOR is required to interpret this model file in full in order to perform model analysis and active
learning. Full details of model implementation details are found in Section 6.1.

3 High Performance Computing Cluster Interface

ICHOR is often required to run thousands of tasks simultaneously when producing models. For
example, when calculating the atomic properties for each training point in a training set, there may be
thousands of tasks, each taking several hours to complete. Running such computational tasks on a single
machine would take an extraordinarily long time. Add in the requirement of per-atom active learning
where the same computation is repeated for each atom in a system and it is obvious that it is necessary
to parallelise the process. There are two forms of scaling the amount of computation ICHOR can
perform: vertical and horizontal. Vertical scaling is used by ICHOR on a per-task basis; for example,
multiple cores may be used by FEREBUS when training a model as a method of speeding up the
production of a single model. Horizontal scaling involves running many tasks concurrently. Using the
same FEREBUS example, ICHOR is able to execute many FEREBUS instances simultaneously to
produce many models at the same time. The combination of horizontal and vertical scaling strategies is
key to ICHOR’s success.

Vertical scaling is a handled on a task-by-task basis and controlled by ICHOR using parameters set by
the user. Each task is in control of how well the number of cores assigned to the task are used. For
instance, AIMAII utilises multiple cores much less effectively than FEREBUS. Hence the lower default
value of the NCORES parameter for AIMAIl compared to FEREBUS as can be seen from Tables S6
and S9. Therefore, instead of relying on vertical scaling for less parallelisable tasks such as AIMAII,
horizontal scaling strategies are employed as an alternative.

ICHOR is designed as a software package to make the best use of HPC clustering systems. HPC
clustering systems provide a method of running tasks across many compute nodes simultaneously.
ICHOR makes use of the ability to submit jobs to many compute nodes to provide horizontal scaling
whilst making GPR models. When calculating the atomic properties for each point in the training set,
many thousands of GAUSSIAN and AIMAII tasks may be required. Such tasks are well suited for
horizontal scaling because all tasks may be submitted to the HPC cluster at once, and executed in a
highly parallel environment.

To make full use of HPC clusters, ICHOR implements several tools and interfaces to perform such
high-throughput computing efficiently and reliably.

30

3.1 Batch System Interface

ICHOR currently implements an interface to two cluster job schedulers: Sun Grid Engine (SGE) and
Simple Linux Utility for Resource Management (SLURM). ICHOR is scheduler-agnostic whereby the
scheduler used does not affect how ICHOR handles jobs internally but instead provides an interface
layer that handles the execution of certain common tasks:

e Submission script syntax
e Submitting jobs to the queueing system
e Monitoring currently running jobs

e Modifying/Deleting currently running jobs
3.2 Submission Script

One of the more complex parts of the ICHOR codebase is the implementation of the creating of
submission scripts. ICHOR’s submission scripts are batch-system-agnostic, machine-agnostic and are
able to efficiently chain multiple commands to execute in a highly parallel manner.

#!/bin/bash -1

#$ -wd /work/gaussian

#$ -o /work/gaussian/.DATA/SCRIPTS/OUTPUTS
#$ -e /work/gaussian/.DATA/SCRIPTS/ERRORS
#$ -pe smp 2

#$ -t 1-10

export OMP_NUM_THREADS=$NSLOTS
module load apps/gaussian/g@9
ICHOR_DATFILE=/work/gaussian/.DATA/JOBS/DATAFILES/gaussian_datafile

arrl=()
arr2=()
while IFS=, read -r varl var2
do
arrl+=($varl)
arr2+=(%$var2)
done < $ICHOR_DATFILE

ICHOR_N_TRIES=0
export ICHOR_TASK_ COMPLETED=false
while ["$ICHOR_TASK_COMPLETED" == false]
do
g09 ${arrl[$SGE_TASK ID-1]} ${arr2[$SGE_TASK ID-1]}

31

let ICHOR_N_TRIES++

if ["$ICHOR_N_TRIES" == 10]
then
break
fi
eval $(ichor -f check gaussian_output "${arrl[$SGE_TASK ID-1]}")
done

Let us work through the example submission script above (Code S9) line by line. Starting at line 2,
ICHOR ensures that the working directory of the script is set explicitly, thereby eliminating any issues
from submitting a script in a different location to which it is to be executed. Lines 3 and 4 set the stdout
and stderr locations, which is useful for monitoring and debugging the execution of jobs. Line 5 sets
the number of cores to assign to each task in the job. This line is both specific to the batch system and
to the machine because ICHOR must select the suitable parallel environment given the requested
number of cores. More details on parallel environments are found in Section 4.3. Line 6 specifies that
the job is to be run as a so-called task array. A task array is an efficient method for running multiple
tasks from a single job script. Here ICHOR is requesting a task array of length 10 making clear that the
job is to run 10 GAUSSIAN calculations.

Line 8 of the submission script ensures that OpenMP applications use only the number of cores that
have been allocated by the batch system. Line 10 is another machine-specific line as the system
configuration defines how particular applications are to be run. In this instance, environment modules
are used to set up the execution environment. Environment modules are discussed in more detail in
Section 4.1. Lines 12 through 20 involve the parsing of an ICHOR datafile into arrays to be used as
program inputs. A datafile is used by ICHOR as a flexible method of passing information on which
tasks to complete by a particular job. More details on data files are in Section 3.3.

The remainder of the lines (22 to 33) perform the execution of the command, which is the GAUSSIAN
command in this case. The actual execution of the command is performed on line 26 with the rest of the
lines providing error handling functionality. The error handling is implemented to improve reliability
and provide flexibility to the developer, which is explained in more detail in Section 3.4.

3.3 Datafiles

One of the most important sections of [ICHOR’s submission script is the ICHOR datafile. The datafile
provides ICHOR with the flexibility of specifying only a file to write to, rather than writing a set of
commands to execute ahead of time. This affords ICHOR the flexibility to change which commands to
execute and the number of commands to be executed rather than the alternative of explicitly writing
each command in the submission script ahead of time. The datafile is a simple text file with command
arguments separated by a delimiter, which is designed to be easily read by the submission script during
execution.

Code S11. Example of a GAUSSIAN datafile

TRAINING_SET/METHANOLO@O1.gjf, TRAINING_SET/METHANOLOOO1.g09

32

TRAINING_SET/METHANOLOOO2.gjf, TRAINING_SET/METHANOL@®OO2.g09
TRAINING_SET/METHANOLO@O3.gjf, TRAINING_SET/METHANOLO®®3.go9
TRAINING_SET/METHANOLOOO4.gjf, TRAINING_SET/METHANOLOOO4 .g09
TRAINING_SET/METHANOLOO®O5.gjf, TRAINING_SET/METHANOL@®OOS . g09
TRAINING_SET/METHANOLOOO6.gjf, TRAINING_SET/METHANOLOOO6 . go9
TRAINING_SET/METHANOLO@O7.gjf, TRAINING_SET/METHANOLO®O7 .g09
TRAINING_SET/METHANOL©OOO8.gjf, TRAINING_SET/METHANOLOOOS8.g09
TRAINING_SET/METHANOLOO@S.gjf, TRAINING_SET/METHANOL@®OO9.g09
TRAINING_SET/METHANOL©@10.gjf, TRAINING_SET/METHANOL©O10.g09

From line 16 in Code S10 it can be seen that the datafile shown in Code S11 will be parsed and each
line split by the comma delimiter. This creates two arrays: one for the GAUSSIAN input file and one
for the GAUSSIAN output file. Subsequently the array is indexed using the task id of the current job,
as can be seen on line 26.

The datafile format is designed with flexibility in mind. Each command is in control of how many
arguments may be parsed from the datafile, while the submission script controls how many tasks must
be written to the datafile. At execution the submission script is responsible for reading the required
number of arguments and indexing the arguments from the parsed arrays to execute the specific task.
This flexibility also allows the opportunity for running a number of tasks different to that allocated
when initially writing the submission script. For example, if the number of jobs was overestimated when
writing the initial script, the script will read in fewer tasks than allocated. When indexing the array, the
job will then fail. On the other hand, if the number of tasks was underestimated, previous statically
defined submission scripts would be unable to execute the requested number of jobs, thereby leaving
ICHOR in an error-state. The datafile method allows for the reindexing of the argument arrays if ICHOR
detects that the number of jobs allocated is fewer than the ones written in the datafile, which is handled
by the error handling processes described in the next section.

3.4 Error Handling

The HPC clusters ICHOR that is expected to run on are large shared heterogeneous systems that can be
unreliable at times. Due to the inhomogeneity, ICHOR may land on a node that is unsuitable for running
the specific task or other users may be using one’s allocated resource causing one’s program to crash.
The uncertainty of the environment that ICHOR’s tasks wil be executed under makes it difficult to
ensure 100% reliability. Therefore when running at scale, it is inevitable that errors will occur. ICHOR
handles these errors through routines that check the outputs of specific programs and that make sure
that the output is as expected. If not, then ICHOR has two options: (i) rerun the program with different
parameters, or (ii) remove the task from the array. The choice will depend on the specific task. How the
failure state is handled by ICHOR based upon the job being ran. For the GAUSSIAN example, it is
required that the parameters used to run each GAUSSIAN job is fixed (as explained in Section 2.2.1),
therefore it makes sense to instead skip the failed GAUSSIAN job. GAUSSIAN jobs are rarely
performed in isolation and are more often performed as part of a larger task array. Therefore skipping
over an individual failed task often has little effect on the job as a whole.

33

The result from the decision on how to handle the task (success or failure) is handled by the eval
statement on line 32 of the submission script (see Code S9). The eval statement calls an ICHOR routine
that will output a bash command to run. If successful then ICHOR TASK COMPLETED will be set
to true, otherwise false, causing the task to be repeated. If the task is to be repeated then a limit is
put in place to prevent an infinite loop, which is controlled on a per-job basis via ICHOR control
parameters.

The method of message passing between ICHOR routines and the bash script allows for ICHOR to not
only control the ICHOR TASK COMPLETED variable but also the task id indexing variable.
Controlling the indexing parameter allows ICHOR to increment the indexing of the argument arrays
providing the opportunity to run more tasks than were allocated to the job. Therefore, during an active
learning run, for example, if a file is unintentionally removed or becomes corrupted, then the file can
be regenerated in the subsequent iteration by adding the extra tasks to the job.

3.5 Submission Queues

The most common cluster configuration is that of a login node that communicates with many compute
nodes. Jobs are submitted to the cluster on the login node and executed on compute nodes, the
scheduling of which is controlled by the clustering software. The ICHOR pipeline requires for jobs to
be queued up behind each other and executed in series. Hence the name “pipeline”. To coordinate this
task, ICHOR queues each job by forcing it to hold until the job queued prior has completed. The total
number of jobs needed to be queued up in larger active learning runs can quickly amount to the tens of
thousands of jobs per run. Adding to this the possibility of other users on the cluster and of multiple
active learning jobs running simultaneously, then queueing jobs manually or submitting all jobs ahead
of time becomes unfeasible. ICHOR currently implements interfaces to three methods of queueing
submission jobs as outlined below.

3.5.1 Hold Queue Wait

The simplest method of queueing all jobs during an active learning run is to submit all jobs ahead of
time and holding each job to wait for the previous job to finish. This is the simplest method of submitting
jobs to the queueing system and can cause batch system instability if many thousands of jobs are
submitted to the queueing system concurrently. A standard per-atom active learning run will typically
produce many thousands of jobs and so this method of job submission is only used as a backup if no
other option is available.

3.5.2 Submit On Compute

A method for submitting far fewer jobs to the queueing system at any one time is by only submitting
the next iteration of jobs after the current iteration of jobs has finished. At the time of writing, an active
learning iteration consists of 7 individual steps Therefore each ICHOR instance will have maximum 7
jobs queued in the queueing system at any given moment. This heavily reduces the number of jobs that
an ICHOR system is required to queue up concurrently, and therefore puts much less stress on the
queueing system.

34

Unfortunately, each ICHOR job is executed on a compute node within a cluster and therefore the final
job in an active learning iteration should submit the next batch of jobs from a compute node. It is
standard practice for a queueing system to have only the login nodes configured as submit host and
compute nodes typically do not have the required privileges to submit jobs to the queueing system.
Therefore, the “submit on compute” method of job submission is only available if it can be confirmed
that each compute node is configured as a submit host. If not, another method of submission is required.

3.5.3 Drop Compute

To combat the number of concurrently queued jobs without changing the privileges of any compute
node, a system known as “drop compute” was developed. The drop compute utility is a cron job that
periodically scans a user’s local directory for submission scripts to submit. If a submission script is
found then the script is submitted to the queueing system by the drop compute system. Instead of
submitting the next iteration’s jobs, the final job of an active learning iteration will write the next
iteration’s submission scripts to the local directory scanned by the drop compute system. As the cron
job is ran from a node with submission privileges, the submission scripts can be written from a compute
node, bypassing the submission privileges usually encountered on a compute node.

The active learning pipeline has the added requirement of holding each job within an iteration in order
for the previous job to finish. The drop compute system has the added functionality of specifying such
a requirement with the use of a hold parameter within the script name.

Code S12. Example list of submission scripts for use by the drop compute system with script id shown

in red and hold commands shown in blue.
ICHOR_GAUSSIAN.sh+1
GAUSSIAN.sh+2+hold 1
ICHOR_AIMALL.sh+3+hold_2
AIMALL.sh+4+4+hold 3
ICHOR_FEREBUS.sh+5+hold 4
FEREBUS.sh+6+hold 5
ICHOR_ACTIVE_LEARNING.sh+7+hold 6

As can be seen in Code S12, each script adds an identifier and a hold command, each separated using a

+ character. The identifier can be any 32 bit number and the hold command adds the script identifier to
hold for.

The drop compute system provides the functionality to submit jobs from a compute node regardless of
whether the compute node has submission privileges. The drop compute system is only available on
systems that implement it and so is not always an option.

35

4 Machines

Each machine that ICHOR is required to run on is configured differently. Therefore, in order to ensure
that the computer (i.e. machine) is fully utilised, ICHOR must implement machine specific
configurations. There are many differences between machines. Each machine will likely differ in
configurations of setting up the environment for program execution. There will also be differences in
privileges a user may use. ICHOR is designed in a manner that provides a robust default method for
program execution and job submission whilst providing options for machine specific optimisations for
each task. ICHOR currently supports 3 separate machines:

e CSF3 (University of Manchester Computational Shared Facility)
e FFLUXLAB (Popelier Group’s In-House Cluster)
e Local (Generic machine with limited functionality)

ICHOR auto-detects the current machine and user privileges on the given machine to determine what
functionality is available to the user such as: available applications, batch systems, hardware
information.

4.1 Environment Modules

A common method for controlling environments is through the use of environment modules.
Environment modules are scripts written in the high-level programming language Tcl. They set up
environment variables required for the execution of a specific program. Environment modules are
therefore both system and application because each system will require different environment variables
and each application will most likely be executed in a unique way.

ICHOR provides interface-to-environment modules that are added to an application’s command line in
a submission script. An example of the use of an environment module is line 10 of Code S10 where the
GAUSSIAN environment module is loaded before running the GAUSSIAN application. The developer
specifies the modules that must be loaded in order to run an external program for a specific system.
Then, at runtime, ICHOR selects the relevant environment module from those available.

4.2 Node Privileges

As mentioned in Section 3.5, each machine will have different privileges based upon the node type that
the application is executed on. For example, the in-house cluster FFLUXLAB is configured such that
all nodes have submission privileges whereas the University-owned Computational Shared Facility
(CSF3) allows jobs to be submitted only from the login node. ICHOR must therefore be able to detect
both the machine and the node type to enable certain actions. The two node types are login and compute,
each enabling certain privileges based upon the machine currently being used.

4.3 Parallel Environments

Each machine has hardware limitations based upon the nodes available to the user. When a user submits
a job, the submission script must request system resources required to run the job. These hardware
requirements will dictate the hardware assigned to the job by the batch system. The hardware
assignment is provided by specifying the given parallel environment, which tells the batch system the
nodes to use to run the job. The parallel environments available depend on the machine and the parallel

36

environment required to run a job will depend on the number of cores being requested. ICHOR
implements an interface to select the correct parallel environment for a given machine, and provides the
hardware limits for each parallel environment on each machine.

4.4 Precompiled Binaries

Not all external programs used by ICHOR are freely available on all machines. For such applications,
ICHOR provides precompiled binaries that are validated to run on a given machine preventing user
errors from using an incorrect or out-of-date binary. At the time of writing, ICHOR comes packaged
with the following in-house binary applications:

e FEREBUS
e TYCHE
e DL _FFLUX

37

5 Per-Value

ICHOR s a natural successor to the previous GPR pipeline application GAIA prompted by the initial
goal to add active learning. Active learning is an iterative approach to improve a machine learning
model where each iteration adds training points that will improve the performance of the model. In early
versions of ICHOR, this active learning was carried out in a per-system manner by summing each
variable over all models within a system.

Performing active learning over an entire system was the simplest implementation but came with certain
drawbacks. Not every atom requires the same amount of data to produce high accuracy models.
Moreover, not all atoms take the same amount of time to generate data or models. Hence, much time
was wasted by waiting for calculations to finish. Future work will move away from the idea of
calculation for all of the atoms within a system. Instead, the approach will use only part of a source
molecule to create models and so a per-system active learning approach makes little sense in this
context.

ICHOR
Starting Qutput Trajectory
4.[CP2K m _]
T S | (
rainin ample
| Set g PocF:s J
—| —
GJFs GJFs i
1 i Calculate Errors g]
WENs

ﬂ{ Bias rl

1 Vanance

INTs

__| GPR \
FEREBUS Models

Figure S10. Schematic of traditional ICHOR per-system active learning method using
the MEPE method.

The alternative approach introduced in later versions of ICHOR is the idea of per-value active learning.
The per-value approach evaluates each model (determined by an atom and a specific property). This
approach enables separate and unique training sets as opposed to the per-system approach, which
restricts each model to use the same training set for all atoms and properties. At the time of writing,
there are three per-value approaches implemented in ICHOR:

38

e Per-Atom
e Per-Property
e Per-Atom Per-Property

The per-atom approach is the standard per-value approach to use. In this approach a property is chosen
to optimise and active learning runs are performed for each atom in the system on the chosen property
(usually atomic energy). Then, models for the remaining properties may be generated for each atom
using the training set produced by the per-atom active learning runs. Consequently, the property chosen
to perform the active learning (defaulted to the IQA energy) controls the generation of the training set,
which is used for all atomic properties.

The per-property approach is similar to the per-atom approach but optimises each output property (e.g.
atomic energy, multipole moments etc.) either for a specified atom or by creating models for each atom
and summing over all atoms of the system. The per-property approach is used less often compared to
the per-atom approach because there are often many more properties than atoms to train, which can
therefore take longer to produce models. Using the per-property approach provides the option to use all
atoms for the active learning (whereby predictions are summed across all atoms of the system).
Alternatively, one selects a single atom to use for the generation of the training set and then use this
training set to produce models for the remaining atoms of the system.

The per-atom per-property approach is an extension of the per-atom approach by optimising not just a
single property but all properties for each atom providing unique training sets for each atom-property
combination. The per-atom per-property method takes up the most time and resources by far. Therefore
it is seldom used in practice but exists as an option if a user wishes to take advantage of this approach.

B C
ICHOR

. Y [3
(500 00 f 00 |

(S BLSE o

EN H 445§ 9445 J adds

Figure S11. Examples of per-value partitioning schemes for a water model: (a) per-
atom approach, (b) per-property approach, and(c) per-atom per-property approach.
Each ICHOR instance (orange) controls a set of ICHOR child processes (yellow) to

perform active learning run on the GPR models (blue).

ICHOR implements the per-value approach by creating child instances from a parent instance and
providing the user with tools to control all child instances simultaneously. Using the parent-child
hierarchy allows for each child to become a parent instance and spawn more child processes, which is
how the per-atom per-property approach is implemented. The initial ICHOR parent class may then
recursively control all child process beneath it, allowing for future expansion if desired.

39

6 Model Analysis

A vital function of ICHOR is to analyse the GPR models being produced to validate the accuracy and
ensuring the model is ready to be used in a simulation. [CHOR implements many tools within the TUI
and CLI for performing generic analyses as well as implementing a comprehensive interface with the
model which may be used for in-depth and niche analyses via the library interface.

6.1 Model Reading

Providing users with an interface for using GPR models is one of the most used features in ICHOR,
therefore it is vital that ICHOR fully supports the model file format standard defined by FEREBUS. An
example model file may be found in Code S9, which demonstrates several of the model file features.
Firstly the model file requires the ALF used to generate the features so that new points that are to be
predicted using the model can use the same ALF when calculating the input features. [CHOR must then
implement all mean functions as detailed in the main text.

One of the most important parts of the model file is the definition of the kernel, which can be composite
kernel, as shown in Code S9. In order to generate composite kernels, [CHOR must implement a method
of adding and multiplying kernels together, and a method for reading and interpreting the composite
kernel as written in the config file.

Adding and multiplying kernels is as simple as implementing two composite kernel types: kg, and
kproa for adding and multiplying kernels respectively:

ksum(xi X*) = kl(xi x*) + kz(x» x*) (Sl)
kprod(x' x*) = kl(x! x*) X kZ(x' x*) (52)

However, interpreting the composite kernel written in the model (such as the k1*k2 example shown in
Code S9) is slightly more complicated. Firstly, the base kernels must be read and stored in a way that
can be referenced using the kernel names, in this case k1 and k2. Secondly, the kernel composition
string must be interpreted before combining the base kernels into the requested composite kernel.
Interpreters are a well-known research topicin the computer science space and plenty of research has
been carried out on it. ICHOR’s kernel interpreter only needs to combine a small number of kernels and
so does not need a complex design. For this reason, ICHOR’s interpreter has been designed in a simple
manner following the basic steps of lexical analysis, which is parsing and then interpreting an abstract
syntax tree (AST) (see Figure S12 (c) for an example).

The lexical analyser (also known as lexer) simply scans the input characters separating the characters

into tokens. A token is a single unit of an expression be that a number, variable name, operator and so
on, a full list of tokens defined in the ICHOR interpreter are as follows:

40

Table S10. All token types used within the ICHOR kernel interpreter with examples.

Token Name Example

Number 1, 2.0, le-3, etc.

Add Operator +

Subtract Operator -

Multiply Operator *

Divide Operator /

Left Pathenthesis (

Right Parenthesis)

Variable Name ki, k2, myvarl, myvar2, etc.
End Of File

Once the input string has been lexed into tokens, they must be parsed into an AST to allow the interpreter
to determine the order in which the tokens must be evaluated. The parser forms expressions within a
tree that can be evaluated, a single node at a time, in order to return the desired result. The parser is not
only responsible for identifying expressions from the tokens but also preserve the correct mathematical
order of operations (including parentheses). The parser is implemented using the well known recursive
descent parsing algorithm. Figure S12 provides a schematic for the workflow of the kernel interpreter.

k1 x k2 + k3

" @QORO®

: o
o ®

@ ®

Figure S12. Schematic for interpreting an example composite kernel: (a) Composite
kernel input string, (b) Lexed tokens, and (c) AST produced by the recursive
descent parser.

41

The final composite kernel may then be returned by evaluating the composite kernel AST from the head
node (first node) downwards whilst substituting any variables with the kernel matching the same
variable name from the model file.

6.2 S-Curves

The most used model analysis tool in ICHOR is the S-curve analysis. Much of a model’s performance
can be determined by its predictive accuracy. Predictive accuracy of a model is often defined in the
literature using a single value, typically the root mean squared error (RMSE) or the mean absolute error
(MAE). When producing models for atomistic simulations, the average error is frequently less important
than the maximum prediction errors. This is because it is the points producing the maximum prediction
errors that will break a molecular simulation. For this reason it is also important to know the distribution
of the prediction errors in order to determine how many points are close to the maximum prediction
error. The more points close to the maximum prediction error, the worse the model.

An S-curve is a cumulative error distribution plot, where the y-axis is expressed in percent and the x-
axis as an absolute prediction error. Each point of an S-curve represents a geometry in the validation
set. Figures S13 and S14 show examples of S-curves generated by ICHOR. An as example of reading
off an S-curve, just over 30% of the geometries have a total prediction energy error of maximum 1
kJ/mol. S-curves for multiple models can be combined to produce a total S-curve displaying the
prediction error for an entire system for example, or

PE(x) = |[f(x) — f ()| (S3)
PEotq (x) = PEi(x) (S4)
®= 2

where f(x) is the true value of point x and f(x) is the predicted value of point x. ICHOR is responsible
for obtaining both the true values and the predictions for each validation point (i.e. geometry) in a
validation set, subsequently writing all prediction errors to an excel file, and finally plotting each S-
curve.

42

Total S-Curve

=1\

O W Bk 01Oy N 0 © O

%

O O O ©O © O © O
_—

.

fo e

0.001 0.01 0.1 1 10 100
Absolute Prediction Error / kJ mol-!

Figure S15. Example of a total S-curve for a glycine 1QA energy model produced by
I1CHOR.

Individual Atom S-Curve

—C1 —N2
—H3 —cC4
—H5 ——C6
—07 ——NB8
——Cc9 —O010
——C11 ——H12
——H13 ——H14

2 H15 ——H16

H17 H18
H19
1E-08 0.000001 0.0001 0.01 1

Absolute Prediction Error / kJ mol-!

Figure S16. Example of S-curves, of individual atoms in glycine, for 1QA energy
models produced by ICHOR.

43

6.3 RMSE Curve

S-curves are ideal for analysising a single model’s predictive performance because the entire spectrum
of prediction errors can be deduced from a single plot. Unfortunately, plotting many S-curves next to
one another makes it difficult to observe underlying trends. Analysing the performance of many models
may be desirable when analysing the performance of an active learning run. In an active learning run, a
new model is produced every iteration, therefore it is useful to track the progress of each model across
the run. Due to the aforementioned difficulties in observing trends with many S-curves, it becomes
easier to track the progress of the active learning using a single number to describe the performance of
each model. The most typical method of determining the predictive performance of a model with a
single number is using an RMSE value. ICHOR is responsible for obtaining the true values of a
validation set alongside the predictions for each atom.

v (P — f) (s5)
N

RMSE(X) =

where X is the validation set consisting of N validation points and x; is the i*" validation point. ICHOR
then outputs the RMSE values for each model alongside the number of training points in each model
allowing the user to plot the RMSE value against the number of training points.

40
35

30

RMSE / kJ mol-!
N N
o ()]

-
a

N
o

0 200 400 600 800 1000 1200 1400 1600
Number of Training Points

Figure S17. Example of an RMSE curve for an N-mehylacetamide active learning run.

44

7 Analysis Tools

ICHOR provides the user with several analysis tools for the analysis, not only of models, but also of
trajectories used to generate models. It is vitally important that a model is created using data that samples
the input space sufficiently well, which may only be ensured via thorough analysis of the input
trajectory.

7.1 Geometry Analysis

The most basic form of geometry analysis provided by ICHOR is the calculation of all bonds, angles
and dihedrals of each timestep of a trajectory (including originating from TYCHE). If the
conformational flexibility of the target system is known, then the flexibility of the input trajectory can
be ensured to meet the criteria through the use of the geometry analysis tools provided by ICHOR.

The first step in performing a geometry analysis on a trajectory is to determine the atoms involved in
each bond angle and dihedral to allow ICHOR to calculate each feature for all timesteps. Firstly, the
connectivity of the system must be determined, as described in the main text, to form a connectivity
matrix. Then from this connectivity matrix, a molecular graph is created whereby each node is an atom
and each covalent bond depicted by an edge. Determining the bonds of a molecular graph is
straightforward as a bond is simply an edge of the graph. Determining the angles of the graph is a little
trickier because this involves searching for two edges connected by a common atom. Finding the
dihedral angles is an extension of this logic by now looking for two angles joined by a common edge.
Once the atoms defining each bond, angle and dihedral have been established, the calculation of each
value is a minor task:

r(A,B) = | AB]|| (S6)

a(A,B,C) = cos™?! A_',;IE, (S7)
|laB||[BC]|

6(A,B,C,D) = atan2(m, -n,,n, -n,) (S8)

where r, a and § are the bond, angle and dihedral functions respectively, atan2 the 2-argument
arctangent, and n,, n, and m, are defined by the following:

BC x CD
n, =—— (59)
|BC x CD||
AB x BC
n, =——s—- (510)
|AB x BC||
X BC (S11)
m; =ng f——
IBC]|

ICHOR then outputs all “raw” feature values for a given trajectory into an excel spreadsheet allowing
the user to perform the necessary analysis. [CHOR also calculates a modified dihedral (6,,,4) that

45

extends the value beyond [0,27] because it is often the case, when performing an analysis on a dihedral
that performs a full rotation, that the value frequently jumps between 0 and 2m (as seen in Figure S21).
Instead ICHOR modifies the dihedral value by setting the value to the cyclic difference between the
current dihedral and the previous dihedral in the trajectory. Hence it is obvious to the user how many
full rotations a dihedral performs throughout a trajectory. The modified dihedral (6,,,4) is defined as
follows:

81', i=0

Omoa = {‘Si—l + (8; — 6;-y + ™) mod 27 — m, i>0 o2

where i is the current index in the trajectory and mod is the modulus function. The geometry analysis
tool is provided to the user through the geometry analysis submenu shown in Figure S18, the output of
which may be seen in Figures S19-S22.

HAARARARRARUARRRAHARRARARAR
Geometry Analysis Menu
R R R AR RR IR RRR AR R AR AR

Run Geometry Analysis

[1] Set Input
[o] Set Output
[submit] Toggle Submit Analysis

[b] Go Back

[a] Toggle Calculate Angles

[d] Toggle Calculate Dihedrals

[m] Toggle Calculate Modified Dihedrals

[u] Toggle Angle Units

Input Location: TRAINING_SET
Output Location: geometry.xlsx
Submit Analysis:

Calculate Bonds: True
Calculate Angles: Tru
Calculate Dihedrals: True
Calculate Modified Dihedrals:

Angle Units: Degrees

Ex1it

Figure S18. Example of the geometry analysis menu.

46

r(C1-H2)

1.3
1.25
o<
~ 12
£
2115
Il
-4 1.1
2
5 1.05
m
1
0.95
0 5000 10000 15000 20000
Timestep

Figure S19. Example of a bond length plot from a geometry analysis on a methanol
1000K CP2K simulation.

a(C1-03-He6)

140

130

120

Bond Angle / °
> "
o o

©
o

80
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Timestep

Figure S20. Example of a bond angle plot from a geometry analysis on a methanol
1000 K CP2K simulation.

47

As can be seen from the difference between Figures S21 and S22, it can be useful to use the modified
dihedral as opposed to the original “raw” dihedral value whilst analysing dihedral angles that perform
full rotations.

§(H2-C1-03-H6)

360
300
240
180 |

120

Dihedral Angle / °

(o2}
o

0 5000 10000 15000 20000
Timestep

Figure S21. Example of a dihedral angle plot from a geometry analysis on a
methanol 1000 K CP2K simulation.

8, .4(H2-C1-03-H6)
1800
1440
1080
720
360

0 5000 100 1500 20000

Dihedral Angle / °

-360
-720 WWAWWAW Vn/

-1080 -
Timestep

Figure S22. Example of a modified dihedral angle plot from a geometry analysis on
a methanol 1000 K CP2K simulation.

48

7.2 Rotate-Mol

Alongside the numerical data detailing how much a molecule distorts across a trajectory, it is also often
quite useful to visualise the data. Generally a good way to visualise the distortions of a molecule is to
overlay all of the configurations of a trajectory. Unfortunately, depending on the method of generating
the trajectory, geometries may not align as to provide a good visualisation of the molecular distortions
due to the molecule translating and rotating in space. ICHOR provides a tool to overlap all or part of a
molecule for each timestep in a trajectory. This tool is known as rotate-mol and can be controlled using
the rotate-mol submenu shown below in Figure S23.

HUBBBBRBRBABARBUR R
Rotate-Mol Menu
HERRBBEERBRECRARREER

Run rotate-mol

Edit Centre Atom(s)
Edit RMSD Subsystem

Set Input File
Set Output File

[submit] Toggle Submit

Centre Atom(s): ['C
RMSD Subsystem: ['C1', 'N2', 'C6', °'C11', 'O10', 'H18', 'C4', '07',

Input File: /scratch2/mfbx4mb9/amber /GLYCINE /300/GL NE -amber-300.xyz
Output File: /net/scratch2/mfbx4mb9/amber/GLYCINE/300/GLYCINE-amber-300_ROTATED.xyz

Submit:

[b] Go Back
Exit

Figure S23. Example of the rotate-mol ICHOR submenu.

Plotting a unrotated trajectory may result in the geometry translating and rotating in the global frame,
an example of which can be seen in Figure S24.

Figure S24. Example of an original trajectory for a 300 K CP2K simulation.

49

Rotate-mol uses the Kabsch algorithm to calculate the optimal rotation matrix that will overlap two
molecules on top of one another. The Kabsch algorithm is a well known algorithm used to find the
optimal rotation matrix R in order to rotate points P onto points Q (both of which are centred on the
origin) using the following:

N
H;j; = Z Py Q;j (513)
k=1
H=UxVT (S14)
d= sign(det(VUT)) (515)
1 0 0
R=V (0 1 0) Ut (S16)
0 0 d
Prot = (RPT)T (S17)

where equation S14 denotes the singular value decomposition of the cross covariance matrix H and P,.,;
is the rotated coordinates P such that the root mean squared deviation (RMSD) between the points P
and Q is minimised. As mentioned previously, points P and Q must be centred on the origin to find the
optimal rotation matrix, which is ensured by subtracting the centroid position of the system from each
atom in the system. The centroid is the mean position in each dimension (non-mass weighted) and
therefore subtracting this position from each atom places the centroid of the system at the origin. After
rotating points P onto points @Q, the system may be recentred at a position chosen by the user. Often this
point is a particular atom but could be the centre between two atoms or the centre of a ring of atoms,
for example. Recentring the system adds additional flexibility when trying to visualise a particular
distortion. The centering atoms and subsystem atoms are controlled uising the submenus ¢ and s (from
the rotate mol menu shown in Figure S23), examples of which may be seen in Figures S25 and S26.

50

Select Atoms To Centre On
cl
N2
H3
of: |
HS
C6
07
N8
c9
010
Cl1
H12
H13
H14
H15

—

[x
[
[
[
[
[
L
[
L
[
[
[
[
[
[
[
[
[
[

Figure S26. Example rotate-mol subsys atom(s) submenu.

In ICHOR’s case, the points P and @Q are the Cartesian coordinates of two configurations of a molecule
but it is not necessary to use the Cartesian coordinates of all atoms within a system. Using just a subset
of the atoms within a system can improve the clarity of specific molecular distortions of interest. For
example, when modelling methanol an important distortion to visualise is the dihedral rotation of the
hydroxyl group. Therefore setting the subsystem to overlap the part of the molecule other than the
hydroxyl hydrogen and centring on the carbon will provide a clearer view of the true distortion of this
hydrogen atom as demonstrated below. An example showing each step of the rotation process for a
methanol molecule may be seen below in Figure S27, with an example on a larger glycine molecule
shown in Figure S28.

51

Figure S27. Example of the rotate-mol pipeline for a methanol 1000 K CP2K
simulation trajectory showing the (a) raw trajectory data, (b) rotate-mol output
using all atoms for the Kabsch algorithm and centring on the origin, (c) rotate-

mol output using all atoms except from the hydroxyl hydrogen for the Kabsch
algorithm and centring on the origin, and (d) rotate-mol output using all atoms
except from the hydroxyl hydrogen for the Kabsch algorithm and centring on the
methyl carbon atom. As seen in the steps from (a) to (d), carefully increasing the
constraints on the trajectory increases the clarity of the hydroxyl group dihedral
rotation whilst visualising on a mist plot.

52

Figure S28. Example of a glycine 300 K CP2K simulation mist plot using the ICHOR
default of using all atoms for the Kabsch algorithm and centering on the origin.

7.3 DL_FFLUX Analysis

ICHOR s designed for the purpose of creating models that can be used in atomistic simulations in the
novel force field DL FFLUX. All the other analysis tools in ICHOR are implemented to provide quick
feedback on the performance of a model before investing time into performing a full-scale simulation
using the models. ICHOR also provides an utility to test the GPR models using DL FFLUX. As with
other analyses, The DL FFLUX analysis is controlled using a submenu, an example of which can be
seen below in Figure S29.

53

HARRRBRRAARRRARAARRARARART
DLPOLY Analysis Menu
HARHRRRRRR AR RARRRRARAR

Run DLPOLY geometry optimisations on model(s)
Run DLPOLY fixed temperature run on model(s)

] Setup DLPOLY Directories
Run Gaussian on DLPOLY Output
Trajectory Analysis Tools

Auto-Run Dlpoly Optimisation Analysis

Select DLPOLY Input
Select Model Input

DLPOLY Input:
Model Location: MODEL_LOG

[b] Go Back
Exit

)).

Figure S29. Example DL_FFLUX interface menu.

To run DL_FFLUX, alongside the GPR models to which it has access, 3 files are required: CONFIG,
CONTROL and FIELD, which we discuss each in turn. The CONFIG file (Code S13) is the default
method of inputting the starting geometry for DL POLY and contains the Cartesian coordinates for
each atom alongside the periodic boundary conditions (PBC) box size. DL_FFLUX also adds the
additional functionality of assigning a model to each atom.

Code S13. Example of a DL FFLUX CONFIG file produced by ICHOR

1 Frame : 1

2 0 1

3 25.0 0.0 0.0

4 0.0 25.0 0.0

5 0.0 0.0 25.0

6 C 1 GLYCINE_C1

7 -0.390847368421 -0.43032684210 0.33991894736
8 N 2 GLYCINE_N2

9 1.052502631578 -0.54192684210 0.33558894736

10 H 3 GLYCINE_H3
11 -0.814447368421 -1.31865684210 -0.13924105263
12 C 4 GLYCINE_C4
13 -0.822717368421 0.82495315789 -0.41701105263
14 H 5 GLYCINE_H5

=
%2}

-0.735257368421

-0.37170684210

1.37720894736

54

16 C 6 GLYCINE_C6

17 1.688162631578 -1.60095684210 0.92531894736
18 0 7 GLYCINE_O7

19 -0.014167368421 1.62230315789 -0.88932105263
20 N 8 GLYCINE_NS8

21 -2.189997368421 0.98070315789 -0.50662105263
22 C 9 GLYCINE_CO

23 -2.769167368421 2.07455315789 -1.24462105263
24 0 10 GLYCINE_O1e

25 1.089572631578 -2.51775684210 1.47933894736
26 C 11 GLYCINE_C11

27 3.189732631578 -1.55068684210 0.85080894736
28 H 12 GLYCINE_H12

29 -2.748127368421 1.82664315789 -2.30906105263
30 H 13 GLYCINE_H13

31 -2.202097368421 2.99340315789 -1.07321105263
32 H 14 GLYCINE_H14

33 -3.802547368421 2.20705315789 -0.91619105263
34 H 15 GLYCINE_H15

35 3.537312631578 -0.72416684210 0.22491894736
36 H 16 GLYCINE_H16

37 3.557282631578 -2.48656684210 0.42120894736
38 H 17 GLYCINE_H17

39 3.593122631578 -1.42242684210 1.85869894736
49 H 18 GLYCINE_H18

41 1.572732631578 0.22148315789 -0.08732105263
42 H 19 GLYCINE_H19

43 -2.791047368421 0.21408315789 -0.23041105263

The second file required for a DL FFLUX simulation is the CONTROL file (Code S14), which controls
the parameters for the execution of both DL POLY and DL FFLUX. ICHOR writes the config file
using parameters set by the user in ICHOR’s config file.

Table S11 shows that the execution of DL FFLUX can be controlled with high fidelity, which is
important for performing detailed analyses on a variety of systems and providing such control to a
novice user. A common task is to perform geometry optimisations of systems using GPR models with
FFLUX because this is often a good test of the predictive accuracy of the model. Moreover, it allows
for a test of the dynamics of the model (how well the gradients of the predictions match the true
derivatives of the PES) and tests the accuracy of the minimum geometry reached using the model.

55

Table S11. List of parameters used to control the execution of DL_FFLUX.

Parameter Description Default Value
DLPOLY_ NCORES Number of cores to use to run 1

DL FFLUX
DLPOLY NUBER OF STEPS Specifies the number of steps to runa 500

DL FFLUX simulation for

DLPOLY TEMPERATURE Sets the temperature of the 0K
DL FFLUX simulation

DLPOLY PRINT EVERY Specifies how often DL FFLUX 1
should write to the output files

DLPOLY_ TIMESTEP Sets the length of the timestep in the 0.001 ps
DL FFLUX simulation

DLPOLY_ LOCATION Specifies the path to the DL FFLUX
executable, this is an automated
process for certain machines

DLPOLY_ _HOOVER Sets time constant parameter for the (.04
Hoover thermostat in DL FFLUX

DLPOLY CHECK CONVERGENCE Specifies whether DL FFLUX should False
check for convergence criteria whilst
performing a geometry optimisation

DLPOLY CONVERGENCE CRITERIA Selects the convergence criteria to use 4 (Gaussian

from a predefined list of values convergence
criteria)

DLPOLY MAX ENERGY Sets the maximum energy -1 (not set)
convergence criteria threshold

DLPOLY MAX FORCE Sets the maximum force convergence -1 (not set)
criteria threshold

DLPOLY RMS FORCE Sets the RMS force convergence -1 (not set)
criteria threshold

DLPOLY MAX DISP Sets the maximum displacement -1 (not set)
convergence criteria threshold

DLPOLY RMS DISP Sets the RMS displacement -1 (not set)

convergence criteria threshold

56

Code S14. Example of a CONTROL file for a glycine 1 K geometry optimisation
Title: GLYCINE

=

ensemble nvt hoover 0.04
temperature 1
timestep 0.001

steps 1000
19 scale 100

OoOoNOUVIPD WN

12 cutoff 8.0

13 rvdw 8.0

14 vdw direct

15 vdw shift

16 fflux cluster L1
17

18 dump 1000

10 traj 010

20 print every 1

21 stats every 1

22 fflux print 0 1
23 Jjob time 10000000
24 close time 20000
25 finish

The final file that DL FFLUX requires is known as the FIELD file (see Code S15). The FIELD file is
traditionally used by DL POLY to define parameters for harmonic bond stretches, angle deformations,
etc. However, there is no need for such parameters in DL FFLUX because the forces are derived from
the GPR models only. Therefore the FIELD file need only specify the mass of each atom. All other
parameters can be omitted. Unfortunately, due to current implementation constraints, all parameters still
must be specified even though they are not used within the simulation. Hence, each bond, angle and
dihedral must be defined with spoof parameters for a simulation to run. Producing such a file by hand
would be a time consuming and error prone process, so ICHOR provides this functionality by reusing
the same technologies to define all internal features as used within the geometry analysis toolkit
demonstrated in Section 7.1.

57

Code S15. Example of a FIELD file for glycine DL FFLUX simulation

1 DL_FIELD v3.00

2 Units kJ/mol
3 Molecular types 1
4 GLYCINE
5 nummols 1
6 atoms 19
7 C 12.0106000 0.0 1 0
8 N 14.0068550 0.0 1 %]
9 H 1.0079750 0.0 1 %]
10 C 12.0106000 0.0 1 0
11 H 1.0079750 0.0 1 0
12 C 12.0106000 0.0 1 %]
13 0 15.9994000 0.0 1 %]
14 N 14.0068550 0.0 1 0
15 C 12.0106000 0.0 1 0
16 0 15.9994000 0.0 1 %]
17 C 12.0106000 0.0 1 %]
18 H 1.0079750 0.0 1 0
19 H 1.0079750 0.0 1 0
20 H 1.0079750 0.0 1 %]
21 H 1.0079750 0.0 1 0
22 H 1.0079750 0.0 1 0
23 H 1.0079750 0.0 1 0
24 H 1.0079750 0.0 1 %]
25 H 1.0079750 0.0 1 0
26 BONDS 18
27 harm 1 2 0.0 0.0
28 harm 1 3 0.9 0.0
29 harm 1 4 0.0 0.0
30 harm 1 5 0.0 0.0
31 harm 2 6 0.0 0.0
32 harm 2 18 0.0 0.0
33 harm 4 7 0.0 0.0
34 harm 4 8 0.0 0.0
35 harm 6 10 0.0 0.0
36 harm 6 11 0.0 0.0
37 harm 8 9 0.0 0.0
38 harm 8 19 0.0 0.0
39 harm 9 12 0.0 0.0
40 harm 9 13 0.0 0.0
41 harm 9 14 0.0 0.0
42 harm 11 15 0.0 0.0

58

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

harm 11 16
harm 11 17
ANGLES 30
harm 1
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm

0O kRRFROOCTOARERERLRNPAEADN

OWOo0WoWOONITITOOODPR,PAP,P,WWNMNNMNMNNNRRR

11

17

DIHEDRALS 32

harm 1 4
harm
harm
harm
harm
harm
harm
harm
harm

NNDNNMNMNNNR R R
a0 R ERrPA~ANMNDN

9 0.0 0.0

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm
harm 10
harm 11
harm 12
harm 13
harm 14
finish

close

oo
oo ®
oo
®>o®

NNUuUVuuUuudADMNDPMDMDMNWWWW

ARARRPRRPRPRPPRPRODOORRLRLRRR

WOONDBRMNNOOVOONNDDIRAN
() K w N

(I
®®

=
(O]
[{o 2o RuVeliNe) le) B e) B e) W o)
N

With the required DL FFLUX input files and the relevant model files in the krig_models directory,
ICHOR is able to submit DL FFLUX simulations to the HPC cluster in the same manner as any other
interfaced external program. The outputs from a DL FFLUX simulation include trajectories, energies
and forces on each atom. ICHOR is able to read such outputs providing an interface with each output
file and allowing for the analysis of the MD trajectory and output predictions.

60

8 Multipole Rotation

As mentioned in the main text, the multipole moments outputted from AIMALII are in the global spherical
harmonic representation and for input to the GPR models it is necessary that the multipole moments are
represented in the local atomic spherical format. To perform the rotation, a C matrix is computed, as
described in the main text, which is used to rotate a set of Cartesian moments into the local frame.
Therefore, to perform the rotation, the global spherical moments must be converted to global Cartesian
moments then rotated into local atomic cartesian multipole moments before converting back to the local
atomic spherical representation. The monopole moment is a scalar quantity and therefore does not need
a rotation into the local frame. All other multipole conversions are described using the following sets
of equations, organised in Tables S12 to S19.

Table S12. Dipole moment spherical to cartesian conversion.

Py = Q11c (518)
Hy = Q11s (S19)
Hz = Q1o (520)

Table S13. Dipole moment cartesian to spherical conversion.

Q10 = U (S21)
Q11c = Uy (S22)
Q15 = Uy (S23)

Table S14. Quadrupole moment spherical to cartesian conversion.

Oxx = _%on + %@QZZC (524)
G)yy = _%on - %\EQZZc (525)
0,2, = Q20 (S26)
Oy = %\/50225 (527)
Oy, = %@Qzu (528)
0y, = %@Qm (529)

61

Table S15. Quadrupole moment cartesian to spherical conversion.

Q20 = 0, (S30)
2

Q21¢c = ﬁexz (S31)
2

Q215 = ﬁ vz (S32)
1

Q22c = \/_g(@xx - G)yy) (S33)
2

Q225 = ﬁexy (534)

Table S16. Octupole moment spherical to cartesian conversion.

5

-Qxxx §Q330 § 31c (535)
5 1

Qxxy §Q33s ﬁQSls (536)
5 1

Q'xyy §Q33c - ﬁQSlc (537)
5 3

Qyyy = §Q33s - §Q3ls (S38)
’ 5 1

Qyxz = EQszc - §Q30 (S39)

Q = iQ (S40)

XYZ 12 32s
5 1

Qyy, = — ’EQazc - §Q30 (541)
2

Qyzz = \/;Q316 (542)

62

2
Qyzz = \/;Q315 (543)
'szz = Q30 (544)
Table S17. Quadrupole moment cartesian to spherical conversion.
Q30 = Q33 (545)
3
Q31c = Eﬂxzz (S46)
3 S47
Q315 = Eﬂyzz ()
3 (548)
Q32c = g ('Qxxz - 'nyz)
3 (549)
QSZS =2 gﬂxyz
1 S50
Q33C = E (Qxxx - 'Qxyy) ()
! (s51)
Qz3s = E(3Qxxy - nyy)
Table S18. Hexadecapole moment spherical to cartesian conversion.
3 1 1
Dyxxx = §Q40 - Z\/§Q426 + § V35Q44c (S52)
1
cI)xxxy = § (_\/§Q425 + Q4—4—s) (S53)
1 1
cI)xxyy = §Q4—0 - § V35Q44¢ (554)

63

1
q)xyyy = g (_\/§Q425 +V 35Q445) (S55)
3 1 1
Dyyyy = §Q40 + Z\/§Q42C + §\/£Q44C (S56)
1
Dy = e (—3V10Q41c + V70Q43.) (S57)
1
Pexyz = 16 (—V10Q415 +V70Q435) (S58)
1
Pryys = =7 (V10Qu1c +V70Qusc) (s59)
1
Dyyy, = TS (3v10Q415 + V70Q435) (S60)
1 1
Dyrzz = _EQ4O + Z\/EQALZC (S61)
1
q)xyzz = Z\/§Q425 (S62)
1 1
q)yyzz = - §Q40 - Z\/§Q42c (S63)
> S64
Dyrzz = §Q41c ()
> S65
q)yzzz = §Q415 ()
D522 = Qao (S66)
Table S19. Hexadecapole moment cartesian to spherical conversion.
Qa0 = P27 (S67)
8
Q4-1C = gq)xzzz (568)
8
Q4-1$ = \/;q)yzzz (569)

64

1
Q42c = 2 g(q)xxzz - cI)yyzz)
Q42$ - 4\/7 cI)xyzz
Q43c - ’ (q)xxxz - xyyz)
2
Qazs = 2 35 (3Psryz — Pyyyz)
1
Qaac = 3c (3Prax = 6Prayy + Pyyyy)
1
Quss =4 35 (q)xxxy - cpxyyy)

(570)

(S71)

(S72)

(573)

(S74)

(S75)

As mentioned previously, in between the conversions from spherical to Cartesian and back, the cartesian
moments must be rotated using the € matrix via an n-rank Cartesian tensor rotation demonstrated by

the following sets of equations:

i = Z Cialta
a
0;) = Z Z CiaCip O
;jk - ZZZ Cla bCkc abc
@i = Z Z Z Z CiaCipCrcClaPapca
a b c d

65

(S76)

(S77)

(578)

(579)

9 Atomic Constants

Table S20. Table of atomic constants used within ICHOR.

Atom Atomic Mass' (A.U) Atomic Radius? (A) Van der Waals Electronegativity*
Symbol Radius?® ()

H 1.00783 0.37 0.430 2.20
He 4.0026 0.32 0.741 0.00
Li 7.01601 1.34 0.880 0.98
Be 9.01218 0.90 0.550 1.57
B 11.0093 0.82 1.030 2.04
C 12.0000 0.77 0.900 2.55
N 14.0031 0.75 0.880 3.04
@) 15.9949 0.73 0.880 3.44
F 18.9984 0.71 0.840 3.98
Ne 19.9924 0.69 0.815 0.00
Na 22.9898 1.54 1.170 0.93
Mg 23.9850 1.30 1.300 1.31
Al 26.9815 1.18 1.550 1.61
Si 27.9769 1.11 1.400 1.90
P 30.9738 1.06 1.250 2.19
S 31.9721 1.02 1.220 2.58
Cl 34.9689 0.99 1.190 3.16
Ar 39.9624 0.97 0.995 0.00
K 38.9637 1.96 1.530 0.82
Ca 39.9626 1.74 1.190 1.00
Sc 449559 1.44 1.640 1.36
Ti 47.9480 1.36 1.670 1.54
\% 50.9440 1.25 1.530 1.63
Cr 51.9405 1.27 1.550 1.66
Mn 54.9381 1.39 1.555 1.55
Fe 55.9349 1.25 1.540 1.83
Co 58.9332 1.26 1.530 1.88
Ni 57.9353 1.21 1.700 1.91
Cu 62.9296 1.38 1.720 1.90
Zn 63.9291 1.31 1.650 1.65
Ga 68.9256 1.26 1.420 1.81
Ge 73.9212 1.22 1.370 2.01
As 74.9216 1.19 1.410 2.18
Se 79.9165 1.16 1.420 2.55

66

Br

Rb
Sr

Zr
Nb

Tc
Ru

Pd

Cd
In

Sn
Sb
Te

Xe
Cs
Ba
La
Ce
Pr
Nd
Pm
Sm
Eu
Gd
Tb
Dy
Ho
Er
Tm
Yb
Lu
Hf
Ta

78.9183
83.9115

1.14
1.1

2.11
1.92
1.62
1.48
1.37
1.45
1.56
1.26
1.35
1.31
1.53
1.48
1.44
1.41
1.38
1.35
1.33
1.30
2.25
1.98
1.69

1.6
1.5
1.38

1.410
1.069
1.670
1.320
1.980
1.760
1.680
1.670
1.550
1.600
1.650
1.700
1.790
1.890
1.830
1.660
1.660
1.670
1.600
1.750
1.870
1.540
2.070
2.030
2.020
2.010
2.000
2.000
2.190
1.990
1.960
1.950
1.940
1.930
1.920
2.140
1.920
1.770
1.630

2.96
3.00

0.95
1.22
1.33
2.16
2.2

2.28
2.20
1.93
1.78
2.05
2.10
2.66
0.89

1.12

1.20

67

A\ 1.46 1.570 12.36

Re 1.59 1.550
Os 1.28 1.570
Ir 1.37 1.520
Pt 1.28 1.700
Au 1.44 1.700 2.54
Hg 1.49 1.900
Tl 1.750
Pb 1.740
Bi 1.48 1.740
Po 1.47 1.880
At 1.46 0.200 2.02
Rn 1.45 0.200
Fr 0.200
Ra 2.100
Ac 2.080
Th 1.990
Pa 1.810
U 1.780
Np 1.750
Pu 0.200
Am 1.710
Cm 0.200
Bk 0.200
Cf 1.730
References

1. Meija, J.; Coplen, T. B.; Berglund, M.; Brand, W. A.; De Biévre, P.; Groning, M.; Holden, N. E.;
Irrgeher, J.; Loss, R. D.; Walczyk, T.; Prohaska, T., Isotopic compositions of the elements 2013 (IUPAC
Technical Report). Pure and Applied Chemistry 2016, 88, 293-306.

2. Clementi, E.; Raimondi, D. L., Atomic Screening Constants from SCF Functions. The Journal of
Chemical Physics 1963, 38, 2686-2689.

3. Alvarez, S., A cartography of the van der Waals territories. Dalton Transactions 2013, 42, 8617-
8636.

4. Allred, A. L., Electronegativity values from thermochemical data. Journal of Inorganic and Nuclear
Chemistry 1961, 17, 215-221.

68

