The formulation of CMC binder/silicon composite anode for Li-ion batteries: from molecular effect of ball milling onto polymer chains to consequences on electrochemical performances

Mariama NDOUR^{a,b}, Jean-Pierre BONNET^a*, Sébastien CAVALAGLIO^a, Tristan LOMBARD^a, Matthieu COURTY^a, Luc AYMARD^a, Cédric PRZYBYLSKI^{c,d}, Véronique BONNET^b*

Supporting Information

gure S1. SEM imaging of silicon before and after SPEX milling	p.1
Figure S2. Difractograms of CMC250 and CMC90 (DS = 0.7).	p.2
Figure S3. SEC with RI detection (blue, red and green traces) and UV-detection.	p.2
Figure S4. Full FT-IR spectra of CMC250.	p.3
Figure S5. Proposed structures issued from the CMC degradation under acidic aqueous conditions and ball milling.	p.3
Figure S6. TGA curves of CMC90, 250 and 700.	p.4
Figure S7. SEM imaging of silicon-based electrodes with CMC90 and 250.	n 5

Figure S1. Scanning Electron Microscopy (SEM) imaging of silicon before and after SPEX milling

Figure S2. Difractograms of CMC 250 and CMC 90 (DS = 0.7) before (black and blue trace, respectively) and after 30 min ball-milling treatment (red and pink trace, respectively).

Figure S3. SEC with RI detection (blue, red and green traces) and UV-detection (grey traces) (λ = 280 nm) based Chromatograms of CMC (DS = 0.7, 0.9 or 1.2) after 30 min ball-milling treatment.

Figure S4. Full FT-IR spectra of CMC 250 (a) and enlargement between 900-1500 cm⁻¹ (b) (DS = 0.7) before (black trace) and after (red trace) 30 min ball-milling treatment.

Figure S5. Proposed structures issued from the CMC degradation under acidic aqueous conditions and ball milling.

Figure S6. TGA curves of a) commercial CMC90 (blue trace), 250 (red trace) and 700 (black trace), b) CMC250 before (black trace) and after (red trace) 30 min ball-milling treatment and c) CMC90 before (black trace) and after (red trace) 30 min ball-milling treatment.

CMC250

CMC90

Figure S7. SEM imaging of silicon-based electrodes with CMC90 (above) and 250 (bottom) as binder from: SPEX + magnetic stirring or all-SPEX formulations.

References

- (1) Ahn, K.; Hennniges, U.; Banik, G.; Potthast, A. Is cellulose degradation due to b-elimination processes a threat in mass deacidification of library books? *Cellulose* **2012**, *19*, 1149, *DOI: 10.1007/s10570-012-9723-3*
- (2) Dee, S.J.; Bell, A.T. A Study of the Acid-Catalyzed Hydrolysis of Cellulose Dissolved in Ionic Liquids and the Factors Influencing the Dehydration of Glucose and the Formation of Humins. *ChemSusChem* 2011, *4*, 1166, DOI: 10.1002/cssc.201000426
- (3) Cao, F.; Schwartz, T.J.; McClelland, D.J.; Krishna,S.H.; Dumesica, J.A.; Huber, G.W. Dehydration of cellulose to levoglucosenone using polar aprotic solvents. *Energy Environ. Sci.*, **2015**, *8*, 1808, DOI: 10.1039/c5ee00353a