Supporting information for

## Effects of cation vacancies at tetrahedral sites in cobalt spinel oxides on oxygen evolution catalysis

Wei Liu<sup>a</sup>, Masao Kamiko<sup>a</sup>, Ikuya Yamada<sup>b</sup>, Shunsuke Yagi<sup>a,\*</sup>

<sup>a</sup>Institute of Industrial Science, The University of Tokyo, 4–6–1 Komaba, Meguro-ku, Tokyo 153–8505, Japan <sup>b</sup>Department of Materials Science, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan

\*Corresponding author E-mail: syagi@iis.u-tokyo.ac.jp (S. Yagi)



Figure S1. Synchrotron X-ray diffraction (SXRD) patterns of  $Zn_xCo_{1-x}Al_2O_4$  (x = 0, 0.2, 0.4, 0.6, 0.8, and 1 in (a) to (f), respectively) and their fitting results by Rietveld refinement. The red dots indicate the observed profiles, green curves indicate the fitting curves, green bars represent the Bragg diffraction positions, and blue lines illustrate the differences between the observed profiles and fitting curves. The wavelength of the irradiated X-rays was calibrated to 0.49995 Å using a standard sample, CeO<sub>2</sub>.  $R_{wp}$  indicates the reliability-weighted pattern factor,  $R_e$  indicates the expected reliability factor and S indicates the goodness-of-fit indicator, where  $S = R_{wp}/R_e$ .



Figure S2. (a) Atomic occupancy of Zn, Co, and Al ions in  $Zn_xCo_{1-x}Al_2O_4$  (x = 0, 0.2, 0.4, 0.6, 0.8, and 1). (b) Relationship between Zn substitution ratio and lattice constants obtained from Rietveld refinement of synchrotron X-ray diffraction (SXRD) patterns.



Figure S3. Fourier transformation of the Co K-edge extended X-ray absorption fine structure (EXAFS) spectra in the R space for  $Zn_xCo_{1-x}Al_2O_4$  (x = 0.2, 0.4, 0.6, 0.8, and 1) with CoO and  $Co_3O_4$  as standard references.



Figure S4. Scanning electron microscopy (SEM) images of  $Zn_xCo_{1-x}Al_2O_4$  (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) with a scale bar of 10  $\mu$ m.



Figure S5. Elemental dispersive spectra of  $Zn_xCo_{1-x}Al_2O_4$  (x = 0, 0.2, 0.4, 0.6, 0.8, and 1).



Figure S6. (a) Surface area evaluated by Brunauer–Emmett–Teller (BET) analysis of N<sub>2</sub> adsorption/desorption isotherms and (b) pore size distribution of  $Zn_{1-x}Co_xAl_2O_4$  variants (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) obtained using the Barrett–Joyner–Halenda method. STP: standard temperature and pressure.  $P/P_0$ : relative pressure to 1 atm. dVp/drp: relative ratio of pore size distribution.



Figure S7. Equivalent circuit used for curve fitting of the electrochemical impedance spectroscopy (EIS) spectra in Fig. 2c. *R* indicates the resistances and *Q* indicates the constant phase elements.



Figure S8. Double-layer capacitances for  $Zn_xCo_{1-x}Al_2O_4$  (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) calculated from the slopes between the currents versus different scan rates obtained from cyclic voltammetry scans between 0.876 V and 0.976 V.



Figure S9. The wide-scan X-ray photoelectron spectroscopy (XPS) spectra for  $Zn_{0.6}Co_{0.4}Al_2O_4$  before and after electrochemical tests for 1200 cycles of potential sweep from 0.926 V to 1.626 V vs. Reversible hydrogen electrode (RHE) at 10 mV s<sup>-1</sup> in a 0.1 M KOH aqueous solution.



Figure S10 (a) Double-layer capacitances for  $Co_3O_4$ ,  $CoAl_2O_4$  and  $Zn_{0.6}Co_{0.4}Al_2O_4$  calculated from the slopes between the currents versus different scan rates obtained from cyclic voltammetry scans between 0.876 V and 0.976 V. (b) Surface area evaluated by Brunauer–Emmett–Teller (BET) analysis of  $N_2$  adsorption/desorption isotherms of  $Co_3O_4$ .

| x   | a (Å)           | Atom | Site        | Occupancy       | x              | у       | Z       | В (Ų)         | Reli<br>fa      | ability<br>ctors |
|-----|-----------------|------|-------------|-----------------|----------------|---------|---------|---------------|-----------------|------------------|
|     |                 | Co1  | 8 <i>a</i>  | 0.8157<br>(12)  | 1/8            | 1/8     | 1/8     | 0.261<br>(7)  | R <sub>wp</sub> | 2.780<br>%       |
| 0   |                 | Al1  | 8a          | 0.1843          | 1/8            | 1/8     | 1/8     | 0.261         | R <sub>e</sub>  | 1.549<br>%       |
|     | 8.098<br>61 (9) | Co2  | 16 <i>d</i> | 0.0921          | 0              | 0       | 0       | 0.297<br>(9)  | S               | 1.794<br>5       |
|     |                 | Al2  | 16 <i>d</i> | 0.9079          | 0              | 0       | 0       | 0.297         |                 |                  |
|     |                 | 0    | 32 <i>e</i> | 1               | 0.23632<br>(6) | 0.23632 | 0.23632 | 0.379<br>(14) |                 |                  |
|     |                 | Zn1  | 8 <i>a</i>  | 0.0922<br>(366) | 1/8            | 1/8     | 1/8     | 0.248<br>(8)  | R <sub>wp</sub> | 2.637<br>%       |
|     |                 | Co1  | 8a          | 0.7746<br>(441) | 1/8            | 1/8     | 1/8     | 0.248         | R <sub>e</sub>  | 1.600<br>%       |
|     | 8.094           | Al1  | 8a          | 0.1332          | 1/8            | 1/8     | 1/8     | 0.248         | S               | 1.647<br>8       |
| 0.2 | 84 (7)          | Zn2  | 16 <i>d</i> | 0.0539          | 0              | 0       | 0       | 0.270<br>(9)  |                 |                  |
|     |                 | Co2  | 16 <i>d</i> | 0.0127          | 0              | 0       | 0       | 0.270         |                 |                  |
|     |                 | Al2  | 16 <i>d</i> | 0.9334          | 0              | 0       | 0       | 0.270         |                 |                  |
|     |                 | 0    | 32 <i>e</i> | 1               | 0.23603<br>(5) | 0.23603 | 0.23603 | 0.347<br>(15) |                 |                  |
|     | 8.087<br>68 (6) | Zn1  | 8a          | 0.3369<br>(582) | 1/8            | 1/8     | 1/8     | 0.331<br>(11) | R <sub>wp</sub> | 4.002<br>%       |
|     |                 | Co1  | 8 <i>a</i>  | 0.5031<br>(700) | 1/8            | 1/8     | 1/8     | 0.331         | R <sub>e</sub>  | 1.555<br>%       |
|     |                 | Al1  | 8a          | 0.1600          | 1/8            | 1/8     | 1/8     | 0.331         | S               | 2.573<br>7       |
| 0.4 |                 | Zn2  | 16 <i>d</i> | 0.0316          | 0              | 0       | 0       | 0.229<br>(13) |                 |                  |
|     |                 | Co2  | 16 <i>d</i> | 0.0484          | 0              | 0       | 0       | 0.229         |                 |                  |
|     |                 | Al2  | 16 <i>d</i> | 0.9200          | 0              | 0       | 0       | 0.229         |                 |                  |
|     |                 | 0    | 32 <i>e</i> | 1               | 0.23624<br>(8) | 0.23624 | 0.23624 | 0.503<br>(24) |                 |                  |
|     |                 | Zn1  | 8 <i>a</i>  | 0.5403<br>(322) | 1/8            | 1/8     | 1/8     | 0.232<br>(7)  | R <sub>wp</sub> | 3.064<br>%       |
|     |                 | Co1  | 8a          | 0.3691<br>(384) | 1/8            | 1/8     | 1/8     | 0.232         | R <sub>e</sub>  | 1.409<br>%       |
| 0.6 | 8.087           | Al1  | 8 <i>a</i>  | 0.0906          | 1/8            | 1/8     | 1/8     | 0.232         | S               | 2.173<br>8       |

Table S1. Lattice constant (*a*), atomic fractional coordinates (*x*, *y*, and *z*), and site occupancies in  $Zn_xCo_{1-x}Al_2O_4$  (*x* = 0–1, space group: 227,  $Fd^{\overline{3}}m$ ) determined by Rietveld refinement of the SXRD patterns in Fig. 1.

|     |                     | Zn2    | 16 <i>d</i> | 0.0298 | 0       | 0        | 0        | 0.263 |                        |       |
|-----|---------------------|--------|-------------|--------|---------|----------|----------|-------|------------------------|-------|
|     |                     |        |             |        | -       | -        | -        | (9)   |                        |       |
|     |                     | Co2    | 16 <i>d</i> | 0.0155 | 0       | 0        | 0        | 0.263 |                        |       |
|     |                     | Al2    | 16 <i>d</i> | 0.9547 | 0       | 0        | 0        | 0.263 |                        |       |
|     |                     | 0      | 270         | 1      | 0.23607 | 0 22607  | 0 22607  | 0.248 |                        |       |
|     |                     | 0      | 528         | 1      | (5)     | 0.23007  | 0.23007  | (14)  |                        |       |
|     |                     | 7n1    | 80          | 0.7774 | 1 / 9   | 1/8      | 1/8      | 0.227 | R                      | 2.840 |
|     |                     | 2111   | 00          | (323)  | 1/0     | 1/0      | 1/0      | (7)   | Nwp                    | %     |
|     |                     | Co1    | 80          | 0.1404 | 1/0 1/0 | 1 /0     | 1 /0     | 0.227 | D                      | 1.563 |
|     |                     | 01     | 00          | (384)  | 1/0     | 1/0      | 1/0      |       | ne                     | %     |
|     | 8.084<br>32 (6)     | Δ11    | 80          | 0 0822 | 1/8     | 1/8      | 1/8      | 0.227 | S                      | 1.816 |
|     |                     | /11    | 00          | 0.0022 |         |          |          |       |                        | 8     |
| 0.8 |                     | Zn2 16 | 16d         | 0 0113 | 0       | 0        | 0        | 0.248 |                        |       |
|     |                     |        | 100         | 0.0115 | 0       | Ū        | Ū        | (9)   |                        |       |
|     |                     | Co2    | 16 <i>d</i> | 0.0298 | 0       | 0        | 0        | 0.248 |                        |       |
|     |                     | Al2    | 16 <i>d</i> | 0.9589 | 0       | 0        | 0        | 0.248 |                        |       |
|     |                     | 0      | 22.5        | 1      | 0.23586 | 0 22596  | 0.225.06 | 0.251 |                        |       |
|     |                     | 0 326  | 320         | 1      | (5)     | 0.23586  | 0.23586  | (15)  |                        |       |
|     |                     | 71     | 0.~         | 0.9554 | 1/0     | 1 /0     | 1 /0     | 0.282 | D                      | 6.011 |
|     |                     | ZNI    | 80          | (16)   | 1/8     | 1/8      | 1/8      | (11)  | <i>K</i> <sub>wp</sub> | %     |
|     |                     | A 14   | 0.~         | 0.0446 | 1/0     | 1 /0     | 1 /0     | 0.202 |                        | 1.513 |
|     | 8.083<br>90<br>(14) | AIT    | 80          | 0.0440 | 1/8     | 1/8      | 1/8      | 0.282 | ĸe                     | %     |
| 1   |                     | 90     | 7-0 464     | 0 0222 | 0       | 0        | 0        | 0.351 | c                      | 3.971 |
|     |                     | ZHZ    | 100         | 0.0223 | U       | U        | 0        | (19)  | 3                      | 9     |
|     |                     | Al2    | 16 <i>d</i> | 0.9777 | 0       | 0        | 0        | 0.351 |                        |       |
|     |                     | 0      | 22.5        | 4      | 0.23584 | 0 2250 4 | 0.00504  | 0.158 |                        |       |
|     |                     | 0      | 320         | 1      | (10)    | 0.23584  | 0.23584  | (28)  |                        |       |

Note: In the fitting, the Zn/Co/Al ratio was set to the nominal value. For example, in the fitting of

 $Zn_{0.6}Co_{0.4}Al_2O_4$ , the total amounts of Zn, Co, and Al were set as 0.6, 0.4, and 2, respectively. Certain constraint parameters were used in the fitting of  $Zn_xCo_{1-x}Al_2O_4$ .

A(A|1,g) = 1-A(Zn1,g)-A(Co1,g)

 $\mathsf{A}(\mathsf{Al2},\mathsf{g}) = 1\text{-}\mathsf{A}(\mathsf{Zn2},\mathsf{g})\text{-}\mathsf{A}(\mathsf{Co2},\mathsf{g})$ 

A(Co2,g) = 0.5\*(1-x)-0.5\*A(Co1,g)

A(Zn2,g) = 0.5\*x-0.5\*A(Zn1,g)

A(Co1,B) = A(Zn1,B), A(Al1,B)=A(Zn1,B)

A(Co2,B) = A(Zn2,B), A(Al2,B)=A(Zn2,B)

A(O1,y) = A(O1,x), A(O1,z)=A(O1,x)

where A indicates functions used in the refinement, O1 indicates the oxygen ions, g indicates occupancy and B indicates the Debye–Waller factor.

For the fitting of  $ZnAl_2O_4$ , the impurity peaks of ZnO were excluded from the fitting, except those that overlapped with the peaks of the spinel phase.

 $R_{wp}$  indicates the reliability-weighted pattern factor,  $R_e$  indicates the expected reliability factor and S indicates the goodness-of-fit indicator, where  $S = R_{wp}/R_e$ .

Table S2. Values of the Co K-edge absorption energy  $E_0$  of the first shell fitting results of X-ray absorption spectroscopy (XAS) and extended X-ray absorption fine structure (EXAFS) near the Co K-edge for  $Zn_xCo_{1-x}Al_2O_4$  (x = 0.2-1). The values of  $E_0$  were acquired from those with the largest first derivative of the X-ray absorption near edge structure (XANES) spectra.

| Sample                                                             | <i>E</i> <sub>0</sub> (eV) | CN        | $\Delta E_0$ | $\sigma^2$ | R factor | <i>R</i> (Å) |
|--------------------------------------------------------------------|----------------------------|-----------|--------------|------------|----------|--------------|
| CoAl <sub>2</sub> O <sub>4</sub>                                   | 7715.84                    | 4.32±0.32 | 1.36±1.10    | 0.00382    | 0.006    | 1.949        |
| $Zn_{0.2}Co_{0.8}Al_2O_4$                                          | 7715.73                    | 4.49±0.41 | 1.19±1.37    | 0.00404    | 0.009    | 1.946        |
| $Zn_{0.4}Co_{0.6}Al_2O_4$                                          | 7715.74                    | 4.53±0.32 | 1.87±1.03    | 0.00366    | 0.005    | 1.936        |
| $Zn_{0.6}Co_{0.4}Al_2O_4$                                          | 7716.02                    | 4.42±0.34 | 1.80±1.15    | 0.00362    | 0.006    | 1.940        |
| Zn <sub>0.8</sub> Co <sub>0.2</sub> Al <sub>2</sub> O <sub>4</sub> | 7716.03                    | 4.76±0.44 | 1.56±1.38    | 0.00387    | 0.009    | 1.935        |

\**k* range: 3–13.5; *R* range: 1–2; CN: coordination number;  $S_0^2$  was fixed at 0.759 for all samples according to the Co foil reference.

| Sample                                                             | Zn (%) | Co (%) | AI (%) | O (%) | Zn/Co ratio                           |
|--------------------------------------------------------------------|--------|--------|--------|-------|---------------------------------------|
| CoAl <sub>2</sub> O <sub>4</sub>                                   | 0      | 15.9   | 22.9   | 61.2  | Zn <sub>0</sub> Co <sub>1</sub>       |
| Zn <sub>0.2</sub> Co <sub>0.8</sub> Al <sub>2</sub> O <sub>4</sub> | 3.2    | 13.3   | 22.4   | 61.1  | Zn <sub>0.19</sub> Co <sub>0.81</sub> |
| Zn <sub>0.4</sub> Co <sub>0.6</sub> Al <sub>2</sub> O <sub>4</sub> | 6.4    | 8.1    | 23.6   | 61.8  | Zn <sub>0.44</sub> Co <sub>0.56</sub> |
| Zn <sub>0.6</sub> Co <sub>0.4</sub> Al <sub>2</sub> O <sub>4</sub> | 7.9    | 5.8    | 21.9   | 64.4  | Zn <sub>0.58</sub> Co <sub>0.42</sub> |
| Zn <sub>0.8</sub> Co <sub>0.2</sub> Al <sub>2</sub> O <sub>4</sub> | 12.9   | 3.1    | 22.8   | 61.3  | Zn <sub>0.81</sub> Co <sub>0.19</sub> |
| ZnAl <sub>2</sub> O <sub>4</sub>                                   | 14.6   | 0      | 22.6   | 62.8  | Zn <sub>1</sub> Co <sub>0</sub>       |

Table S3. Atomic concentration ratios of Zn, Co, Al and O atoms in  $Zn_xCo_{1-x}Al_2O_4$  (x = 0–1) estimated by elemental dispersive spectroscopy.

| Sample                           | Surface area by BET analysis (m <sup>2</sup> | Average pore size (nm) |
|----------------------------------|----------------------------------------------|------------------------|
|                                  | g <sup>-1</sup> )                            |                        |
| CoAl <sub>2</sub> O <sub>4</sub> | 56.3                                         | 17.2                   |
| $Zn_{0.2}Co_{0.8}AI_2O_4$        | 43.8                                         | 24.8                   |
| $Zn_{0.4}Co_{0.6}AI_2O_4$        | 50.5                                         | 17.1                   |
| $Zn_{0.6}Co_{0.4}AI_2O_4$        | 46.8                                         | 19.8                   |
| $Zn_{0.8}Co_{0.2}AI_2O_4$        | 41.9                                         | 22.3                   |
| ZnAl <sub>2</sub> O <sub>4</sub> | 29.8                                         | 29.3                   |

Table S4. Specific surface areas of  $Zn_xCo_{1-x}Al_2O_4$  determined by Brunauer-Emmett-Teller (BET) analysis of the  $N_2$  adsorption/desorption isotherms in Fig. S4a and the average pore size determined by the Barrett–Joyner–Halenda method in Fig. S4b.

| Sample                           | $R_1(\Omega)$ | <i>R</i> <sub>2</sub> (Ω) | <i>Q</i> <sub>2</sub> (μF·s <sup>a-1</sup> ) | <i>a</i> <sub>2</sub> | <i>R</i> <sub>3</sub> (Ω) | <i>Q</i> <sub>3</sub> (μF·s <sup>a-1</sup> ) | <i>a</i> <sub>3</sub> |
|----------------------------------|---------------|---------------------------|----------------------------------------------|-----------------------|---------------------------|----------------------------------------------|-----------------------|
| CoAl <sub>2</sub> O <sub>4</sub> | 4.165         | 120.2                     | 0.047                                        | 0.973                 | 5123                      | 32.02                                        | 0.861                 |
| $Zn_{0.2}Co_{0.8}Al_2O_4$        | 4.719         | 93.74                     | 0.038                                        | 0.996                 | 8606                      | 17.97                                        | 0.766                 |
| $Zn_{0.4}Co_{0.6}AI_2O_4$        | 1.752         | 54.73                     | 0.158                                        | 0.949                 | 7168                      | 29.04                                        | 0.821                 |
| $Zn_{0.6}Co_{0.4}Al_2O_4$        | 1.708         | 55.82                     | 0.175                                        | 0.932                 | 1010                      | 96.88                                        | 0.890                 |
| $Zn_{0.8}Co_{0.2}AI_2O_4$        | 3.423         | 101.1                     | 0.068                                        | 0.961                 | 6656                      | 32.15                                        | 0.924                 |
| ZnAl <sub>2</sub> O <sub>4</sub> | 2.767         | 119.2                     | 0.081                                        | 0.937                 | 66322                     | 19.97                                        | 0.770                 |

Table S5. Curve fitting results of the electrochemical impedance spectroscopy (EIS) spectra in Fig. 2c using the equivalent circuit in Fig. S5.

| $Zn_{0.6}Co_{0.4}Al_2O_4$ |           | Original | After 1200 cycles |
|---------------------------|-----------|----------|-------------------|
| Co 2p <sub>3/2</sub>      | BE (eV)   | 781.3    | 781.6             |
|                           | FWHM (eV) | 4.2      | 3.3               |
|                           | Area (%)  | 36.0     | 36.0              |
| Co 2p <sub>3/2</sub> sat. | BE (eV)   | 785.1    | 785.4             |
|                           | FWHM (eV) | 7.0      | 6.8               |
|                           | Area (%)  | 30.7     | 30.7              |
| Co 2p <sub>1/2</sub>      | BE (eV)   | 797.2    | 797.5             |
|                           | FWHM (eV) | 4.4      | 3.8               |
|                           | Area (%)  | 18.0     | 18.0              |
| Co 2p <sub>1/2</sub> sat. | BE (eV)   | 803.8    | 804.1             |
|                           | FWHM (eV) | 6.4      | 6.5               |
|                           | Area (%)  | 15.3     | 15.3              |
| OL                        | BE (eV)   | 529.9    | 529.9             |
|                           | FWHM (eV) | 2.1      | 1.0               |
|                           | Area (%)  | 29.8     | 1.0               |
| O <sub>D</sub>            | BE (eV)   | 531.3    | 531.4             |
|                           | FWHM (eV) | 2.2      | 1.9               |
|                           | Area (%)  | 22.5     | 63.2              |
| O <sub>A</sub>            | BE (eV)   | 532.6    | 532.4             |
|                           | FWHM (eV) | 3.4      | 2.3               |
|                           | Area (%)  | 47.69    | 35.7              |

Table S6. Curve fitting results of X-ray photoelectron spectroscopy (XPS) spectra displayed in Figs. 4c and d for  $Zn_{0.6}Co_{0.4}Al_2O_4$  before and after 1200 cycles of potential sweep between 0.926 V and 1.626 V vs. reversible hydrogen electrode (RHE) at a scan rate of 10 mV s<sup>-1</sup>.

\*BE: binding energy; FWHM: full width at half maximum; OL: lattice oxygen; OD: oxygen defects; OA: adsorbed oxygen.

Table S7 concentration of cations in the 0.1 M KOH electrolyte of  $Zn_{0.6}Co_{0.4}Al_2O_4$  after 1200 cycles of potential sweep between 0.926 V and 1.626 V vs. reversible hydrogen electrode (RHE) at a scan rate of 10 mV s<sup>-1</sup>.

|                    | Zn/ppm | Co/ppm | Al/ppm |
|--------------------|--------|--------|--------|
| Before 1200 cycles | 0      | 0      | 0      |
| After 1200 cycles  | 0.022  | 0.004  | 0.006  |