Phosphorus-Modified Pt@Cu Surfaces for Efficient Electrocatalysts of Hydrogen Evolution

Yeshu Tan¹, Longxiang Liu¹, Liquan Zhang¹, Siyu Zhao², Dan J.L. Brett², Paul R. Shearing², Ying Bai³, Ivan P. Parkin^{1*} and Guanjie He^{1.2*}

¹Christopher Ingold Laboratory, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom. Email: g.he@ucl.ac.uk; i.p.parkin@ucl.ac.uk

²Electrochemical Innovation Laboratory, Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom.

³School of Physics & Electronics, Henan University, Kaifeng 475004, P.R. China

Fig. S1 SEM image of Pt@Cu.

Fig. S2 Photographic images of Pt@Cu and Pt/P@Cu.

Fig. S3 XRD patterns of Pt@Cu and Pt/P@Cu.

Fig. S4 XPS survey spectra of Pt@Cu and Pt/P@Cu.

Fig. S5 Raman spectra of Pt@Cu and Pt/P@Cu.

Fig. S6 CV curves of (a) Pt@Cu and (b) Pt/P@Cu with scan rates from 10 mV s⁻¹ to 100 mV s⁻¹. (c) Double-layer capacitance of Pt@Cu and Pt/P@Cu.

Fig. S7 1000 cycles of LSV tests of Pt/C under a scan rate of 100 mV s^{-1} with iR correction.

Catalysts	Electrolyte	Overpotential at -10 mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Reference
Pt/P@Cu	1 M PBS	24.3	50.2	This work
Pt-Fe ₅ Ni ₄ S ₈	1 M PBS	98	58	1
PtRh DNAs	1 M PBS	23	87	2
Pt–TiO _{2–x} NS	1 M PBS	88	67.6	3
Pt _{SA} /a-MoC _{1-x} @C	1 M PBS	36	30	4
Pt/np-Co _{0.85} Se	1 M PBS	55	35	5
Pt/N-Mo ₂ C	1 M PBS	49	86.7	6
Pt ₃ Fe/BNC	1 M PBS	72	30.7	7
Pt–Pd@NPA	1 M PBS	34.8	32.2	8
Pt/VC	1 M PBS	68	65	9

Supplementary Table 1. Comparison of overpotentials at a current density of -10 mA cm⁻² and Tafel slopes of Pt/P@Cu with recently reported Pt-based catalysts in a neutral medium.

Reference

- C. Zhang, Y. Cui, Y. Yang, L. Lu, S. Yu, Z. Meng, Y. Wu, Y. Li, Y. Wang, H. Tian and W. Zheng, *Adv. Funct. Mater.*, 2021, **31**, 2105372.
- Z. Han, R.-L. Zhang, J.-J. Duan, A.-J. Wang, Q.-L. Zhang, H. Huang and J.-J. Feng, *Int. J. Hydrogen Energ.*, 2020, 45, 6110-6119.
- 3. K. M. Naik, E. Higuchi and H. Inoue, *Nanoscale*, 2020, **12**, 11055-11062.
- W. Wang, Y. Wu, Y. Lin, J. Yao, X. Wu, C. Wu, X. Zuo, Q. Yang, B. Ge, L. Yang, G. Li, S. Chou, W. Li and Y. Jiang, *Adv. Funct. Mater.*, 2022, **32**, 2108464.
- 5. K. Jiang, B. Liu, M. Luo, S. Ning, M. Peng, Y. Zhao, Y.-R. Lu, T.-S. Chan, F. M. F. de Groot and Y. Tan, *Nat. Commun.*, 2019, **10**, 1743.
- Y. Qiu, Z. Wen, C. Jiang, X. Wu, R. Si, J. Bao, Q. Zhang, L. Gu, J. Tang and X. Guo, Small, 2019, 15, 1900014.
- Y. Qiao, J. Cui, F. Qian, X. Xue, X. Zhang, H. Zhang, W. Liu, X. Li and Q. Chen, ACS Appl. Nano Mater., 2022, 5, 318-325.
- C. Yang, H. Lei, W. Z. Zhou, J. R. Zeng, Q. B. Zhang, Y. X. Hua and C. Y. Xu, *J. Mater. Chem. A*, 2018, 6, 14281-14290.
- 9. N. Wang, X. Bo and M. Zhou, ACS Appl. Mater. Interfaces, 2022, 14, 23332-23341.