Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

Supporting Information

g-C₃N₄/Dendritic Fibrous Nanosilica Doped with Potassium for Photocatalytic CO₂ Reduction

Sushma A. Rawool, Yusuf Kar, and Vivek Polshettiwar*,

Department of Chemical Sciences, Tata Institute of Fundamental Research (TIFR), Mumbai, India. Email: vivekpol@tifr.res.in, Phone: (+91) 8452886556

K-g-C₃N₄ coated DFNS (K-CN/DFNS)

Fig. S1 Synthesis procedure for the production of K-CN/DFNS using a vacuum-sealed quartz tube

Fig. S2 Photograph of the experimental setup for the photocatalytic CO₂ conversion.

Fig. S3 High-resolution XPS spectra of a. K 1s, b. Si 2p and c. O 1s of CN/DFNS and K-CN/DFNS-2

Fig. S4 N₂ sorption isotherms of DFNS, g-C₃N₄, CN/DFNS and K-CN/DFNS

Fig. S5 BJH pore size distribution of DFNS, g-C₃N₄, CN/DFNS and K-CN/DFNS

Fig. S6 CO₂ adsorption-desorption isotherm recorded at 298 K for CN/DFNS, K-CN/DFNS-1 and K-CN/DFNS-2.

Fig. S7 a. Gas chromatogram recorded using mass spectrometer (MS) detector, b. enlarged view of chromatogram at 25.77 min and c. mass spectrum at 25.77 min.

Fig. S8 High-resolution XPS spectra of a. C1s, b. N1s, c. O 1s, d. Si 2p, and e. K 2p of k-CN/DFNS and K-CN/DFNS-2 used

Sr. No.	Sample	Experimental Conditions	Light source	CO ₂ conversion products	Reference
1	K-CN/DFNS- 2 (6 wt% potassium ion)	15 mg catalyst, moist CO ₂	300 W Xe lamp (385-740 nm, 318 mW cm ⁻²)	CH ₄ : 1.7 μmol g ⁻¹ in 4 h	This work
2	Potassium doped g-C ₃ N ₄ (1.85 atom% potassium)	Catalyst dispersed in 2 mL of water, CO ₂	Visible light (simulated by a CEAULIGHT CEL-HXF300	CO: 8.7 μmol g ⁻¹ h ⁻	Wang et al [1]

Table S1: Comparison of photocatalytic activity of K-CN/DFNS sample with literature

			with 420 nm cut-off filter)		
3	K- incorporated amino-rich g- C ₃ N ₄	15 mg catalyst, water vapour, CO ₂	Xe lamp (1 sun simulated sunlight)	CO: ~ 9.6 μ mol g ⁻¹ h ⁻¹ CH ₄ : ~ 8 μ mol g ⁻¹ h ⁻¹	Sun et al [2]
4	Amine- functionalized g-C ₃ N ₄	100 mgcatalyst, CO_2 generatedinsidethereactor (0.084)gNaHCO3gNaHCO3H0.3 mL of 2 MH_2SO4)	300 W Xe	CH ₄ : 0.34 CH ₃ OH: 0.28	Huang et al [3]
5	Sulfur doped g-C ₃ N ₄	100mgcatalyst,CO2generatedinsidethephotoreactor(NaHCO3+HCl)	300-W simulated solar Xe arc lamp	CH ₃ OH: 1.12 μmol g ⁻¹ in 3h	Wang et al [4]
6	P doped and cyano group incorporated g-C ₃ N ₄	100mgcatalyst + 1 MNaHCO3+CO2	300 W Xe lamp equipped with a 420 nm cut-off filter, 200 mW cm ⁻²	CO: 1.17 μmol g ⁻¹ in 3h	Liu et al [5]
6	Nonmetal (B, P, O and S) doped porous g-C ₃ N ₄	50 mg catalyst dispersed in 100 mL of water, CO ₂	UV lamp (100- 280 nm)	CH ₄ : 55.1 nmol (ml of H ₂ O) ⁻¹ g ⁻¹ h ⁻¹	Arumugam et al [6]

References:

 Wang, S.; Zhan, J.; Chen, K.; Ali, A.; Zeng, L.; Zhao, H.; Hu, W.; Zhu, L.; Xu, X. Potassium-Doped g-C₃N₄ Achieving Efficient Visible-Light-Driven CO₂ Reduction, *ACS Sustainable Chem. Eng.* 2020, 8(22), 8214–8222.

- Sun, Z.; Wang, S.; Li, Q.; Lyu, M.; Butburee, T.; Luo, B.; Wang, H.; Fischer, J. M. T. A.; Zhang, C.; Wu, Z. Wang, L. Enriching CO₂ Activation sites on graphitic carbon nitride with simultaneous introduction of electron-transfer promoters for superior photocatalytic CO₂-to-fuel conversion, *Adv. Sustainable Syst.*, **2017**, 1, 1700003.
- Huang, Q.; Yuab, J.; Cao, S.; Cui, C.; Cheng, B. Efficient photocatalytic reduction of CO₂ by amine-functionalized g-C₃N₄, *Appl. Surf. Sci.* 2015, 358, 350–355.
- Wang, K.; Li, Q.; Liu, B.; Cheng, B.; Ho, W.; Yu, J. Sulfur-doped g-C₃N₄ with enhanced photocatalytic CO₂- reduction performance, *Applied Catalysis B: Environmental*, 2015, 176–177, 44-52.
- Liu, X.; Wang, P.; Zhai, H.; Zhang, Q.; Huang, B.; Wang, Z.; Liu, Y.; Dai, Y.; Qin, X.; Zhang, X. Synthesis of synergetic phosphorus and cyano groups (-C≡N) modified g-C₃N₄ for enhanced photocatalytic H₂ production and CO₂ reduction under visible light irradiation, *Appl. Catal. B: Environ.* 2018, 232, 521-530.
- Arumugam, M.; Tahir, M.; Praserthdam, P. Effect of nonmetals (B, O, P, and S) doped with porous g-C3N4 for improved electron transfer towards photocatalytic CO₂ reduction with water into CH₄, *Chemosphere*, **2022**, 286(2), 131765.