Electronic Supplementary Material (ESI) for Materials Advances. This journal is © The Royal Society of Chemistry 2022

# Ab-initio Study of Lithium Intercalation into a Graphite Nanoparticle Supporting Information

Julian Holland<sup>1,5</sup>, Arihant Bhandari<sup>1,5</sup>, Denis Kramer<sup>2,3,5</sup>, Victor Milman<sup>4</sup>, Felix Hanke<sup>4</sup> and Chris-Kriton Skylaris<sup>1,5</sup>

<sup>1</sup>School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK

<sup>2</sup>Faculty of Mechanical Engineering, Helmut-Schmidt University, Hamburg, 22043, Germany

<sup>3</sup>Engineering Sciences, University of Southampton, Southampton SO17 1BJ, UK

<sup>4</sup>BIOVIA, Unit 334 Cambridge Science Park, Milton Road, Cambridge, Cambridgeshire, CB4 0WN, UK

<sup>5</sup>The Faraday Institution, Quad One, Becquerel Avenue, Harwell Campus, Didcot, OX11 0RA, UK

## 1 Simulation Cell

We include an image of our nanoparticle inside its large simulation cell.



Figure S1: Our nanoparticle in a  $50\text{\AA} \times 50\text{\AA} \times 50\text{\AA}$  simulation cell

## 2.1 No Restrictions PBE-D2 structures

000

0.00

000

0000 00

0

000

0000

60 C

0000 00

0.00

0 0

000

0000



Figure S2: First 51 structures made using the PBE-D2 functional without any restriction on atom placement.

------ADADADADADADADADAD and the second second second

9.0 00 0000



and the second sec 

9.00° 000 0.00°



9

0.00 000 0 0 00

0 8 000







| 688 | 800    |
|-----|--------|
| 0.0 | 0.0000 |

0 8 8 0 8 00 0 9 0 0 0 00







| Contraction of the local division of the loc | and the second     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 600                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Contraction of the |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |

0000000

| -    |     | <br>and the second |          |
|------|-----|--------------------|----------|
| 13   | 8.0 | 600                |          |
| -    |     |                    | <u>.</u> |
|      |     |                    |          |
|      |     | <br>ALC ALCONT     |          |
| 00   |     |                    |          |
| 1000 |     |                    | μ.       |

| 6                 | 6 |   | Ū | 600 |  |
|-------------------|---|---|---|-----|--|
| 00                |   |   |   |     |  |
| 00                | 8 | 0 |   | 80  |  |
| The second second |   |   |   | -   |  |

| 6                                                                                                               | 0.0 | 0.0 | 6  |   |
|-----------------------------------------------------------------------------------------------------------------|-----|-----|----|---|
|                                                                                                                 | -   |     | 0  |   |
| 00                                                                                                              | 50  | 00  | 60 | ) |
| The second se |     |     |    |   |



Figure S3: The 60 structures made using the PBE-D2 functional with restriction on atom placement between graphite layers.

0

00 0 0 0 00

0,0,0,000,

A STATISTICS AND A STATISTICS

A DESCRIPTION OF THE REAL OF T

00000000

60 8 2 8 00

01200

The second second second second

3,000000

3000000

0000

00000

0120100

0

80 BOO

0000000

00000000

- -----

0000000

Co. 1 2 45 CO

0012000























| 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.                                                                          |
|-----------------------------------------------------------------------------------------------------------------|
| 0                                                                                                               |
| 00 8 8 6 00                                                                                                     |
|                                                                                                                 |
| The second se |











|    | 96 |     | 50  |
|----|----|-----|-----|
| 00 | 88 | -00 | 000 |
|    | 20 | 06  |     |

| 00 |    | 0         |
|----|----|-----------|
| 00 | 30 |           |
|    |    | <br>tine. |
| -  |    | 0         |

|        | 2 |
|--------|---|
| 000000 | D |
|        | Ö |



Figure S4: The 60 structures made using the optPBE functional with restriction on atom placement between graphite layers.

All



(a) 0 Li PBE-D2



(b) 60 Li PBE-D2

Figure S5



All

(a) 0 Li optPBE



(b) 60 Li optPBE

Figure S6

#### 4 Insertion Energy

We calculate the insertion energy as a slight reformulation of equation 5:

$$E_{ins} = \frac{\Delta E}{\Delta n} = \frac{E_{\text{Li}_{n_2}\text{G}} - E_{\text{Li}_{n_1}\text{G}} - (n_2 - n_1)E_{\text{Li}(\text{BCC})}}{(n_2 - n_1)}$$
(1)

for all on hull sturctures. This provides the values for the graph shown in Fig. S7.



Figure S7: Insertion energy (eV) for on-hull structures with increasing lithiation for optPBE (red) and PBE+D2 (orange)

### 5 Data

Data related to the individual calculations performed in this paper, such as the ONETEP .out files, are provided at the following github repository. Any questions/request for more data can be asked for on the github repository by opening an issue.

https://github.com/julianholland/Ab\_initio\_Study\_of\_Lithium\_Intercalation\_into\_a\_Graphite\_Nanoparticle\_ SI/