Exploring How Exposure to Radiolysis and Harsh ChemicalReagentsImpactAmericium-241ExtractionChromatography

SUPPORTING INFORMATION

Brian T. Arko,^{1,2} David Dan,¹ Sara Adelman,^{1,*} David B. Kimball,^{1,*} Stosh A. Kozimor,^{1,*}

Marki M. Martinez,¹ Tara E. Mastren,³ Daniel L. Huber,¹ Veronika Mocko,¹ Jung Rim,¹

Jenifer C. Shafer,^{2,*} Benjamin W. Stein,¹ E. Miller Wylie II.¹

¹Los Alamos National Laboratory, Los Alamos, NM 87545 (U.S.A.)

²Department of Chemistry, Colorado School of Mines, Golden, CO 90401 (U.S.A.)

³Department of Nuclear Engineering, University of Utah, Salt Lake City, UT 84112 (U.S.A)

*Corresponding author; sadelman@lanl.gov, <a href="mailto:skield-skiel skield-ski

Figure S1. The IR spectra from '*pristine*' *m*-CMPO^{TBP} resin (*top*, no radiation nor acid exposure) and resin aliquots taken from active columns (2, 3, and 4) used in the CLEAR process ('*veteran*' resin samples that were exposed to acid and ²⁴¹Am). The ²⁴¹Am radiation dose received by the veteran resin decreased from Column #2 to Column #4.

Figure S2. The IR spectra from '*pristine*' *m*-CMPO^{TBP} resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from *m*-CMPO^{TBP} resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to 137 Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose.

Figure S3. The IR spectra from '*pristine*' RE resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from RE resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose.

Figure S4. The IR spectra from '*pristine*' TODGA resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from TODGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose.

Figure S5. The IR spectra from '*pristine*' TEHDGA resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from TEHDGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose.

FIGURE S6. The GCMS chromatograms from '*pristine*' *m*-CMPO^{TBP} resin (*top*no exposure to radiation or acid). The trace second from the top show spectra from *m*-CMPO^{TBP} resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All chromatograms are normalized to the *m*-CMPO intensity.

Figure S7. The GCMS chromatograms from '*pristine*' RE resin (*top-no* exposure to radiation or acid). The trace second from the top show spectra from RE resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All chromatograms are normalized to the RE intensity.

Figure S8. The GCMS chromatograms from '*pristine*' TODGA resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from TODGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All chromatograms are normalized to the TODGA intensity.

Figure S9. The GCMS chromatograms from '*pristine*' TEHDGA resin (*top*-no exposure to radiation or acid). The trace second from the top show spectra from TEHDGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All chromatograms are normalized to the TEHDGA intensity.

Figure S10. The ³¹P NMR (¹H coupled) spectra from '*pristine*' RE resin (*top*no exposure to radiation or acid). The trace second from the top shows spectra from RE resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the TBP intensity.

Figure S11. The ¹H NMR spectra from '*pristine*' *m*-CMPO^{TBP} resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from *m*-CMPO^{TBP} resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the δ 1 ppm intensity.

Figure S12. The ¹H NMR spectra from '*pristine*' RE resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from RE resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the δ 1 ppm intensity.

Figure S13. The ¹H NMR spectra from '*pristine*' TODGA resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from TODGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the δ 1 ppm intensity.

Figure S14. The ¹H NMR spectra from '*pristine*' TEHDGA resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from TEHDGA resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the δ 1 ppm intensity.

Figure S15. The zoomed in ³¹P NMR (¹H coupled) spectra from '*pristine*' *m*-CMPO^{TBP} resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from *m*-CMPO^{TBP} resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose.

Figure S6. The zoomed in ³¹P NMR (¹H coupled) spectra from '*pristine*' RE resin (*top*-no exposure to radiation or acid). The trace second from the top shows spectra from RE resin that was exposed to HCI (0.1 M *left*, 7 M *right*). Spectra from resins that were exposed to ¹³⁷Cs radiation are shown in the subsequent traces moving down the figure as a function of increasing dose. All spectra were normalized to the TBP intensity.

Figure S17. ³¹P NMR spectra of DiButylPhosphate (DBP), TriButylPhosphate (TBP) and a mixture of pure TBP and pure DBP.

Table S1 Results verifying procedure with Nd/²⁴¹Am metal binding measurements using stable Eu traced with ¹⁵⁵Eu.

Resin	Metal Binding (mg M/g Resin)	
	¹⁵⁵ Eu	Eu ICP
<i>m-</i> CMPO ^{TBP}	16 ± 2	16 ± 1
Rare Earth	9 ± 2	10 ± 4
TODGA	38 ± 5	40 ± 9
TEHDGA	49 ± 9	53 ± 3