Supporting Information

Additively manufactured thermosetting elastomer composites:

Small changes in resin formulation lead to large changes in

mechanical and viscoelastic properties

Ye Wang,^a Ian M. McAninch,^c Antoine P. Delarue,^b Christopher J. Hansen,^b E. Jason Robinette,^c

and Amy M. Peterson*a

^aDepartment of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

^bDepartment of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA

^cWeapons and Materials Research Directorate, US Army Combat Capabilities Development Command-Army

Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

Monomers added to the base resin system

Table S1. Descriptions of added monomers, molar percentage, short names, and corresponding

Product name	Molar percentage (mol.%)	Short name	Chemical structure
2-hydroxyethyl methacrylate	7.18	HEMA	ОСОН
2-ethylhexyl acrylate	5.18	EHA	

chemical structures.

Tensile testing

Figure S1. Stress-strain curves for neat and glass microsphere-filled samples from tensile testing.

Table S2. P-values	for one-way	ANOVA	of given	tensile pro	operties	for a	given	group) .
	2		0		1				

Groups	Young's	Elongation at	Fracture/Ultimate	Toughness
	modulus	break	Strength	
All conditions (Resin,	1.2×10 ⁻²¹	5.9×10 ⁻¹⁶	2.1×10 ⁻¹²	0.06
rHEMA, rEHA, gResin,				
gHEMA, gEHA)				
Resin, rHEMA, rEHA	5.8×10 ⁻⁵	0.67	0.01	0.06
gResin, gHEMA, gEHA	0.03	2.0×10 ⁻³	1.4×10 ⁻³	0.10
gHEMA, gEHA			2.5×10 ⁻³	

Table S3. Summary of mechanical properties of printed neat and glass microsphere-filled samples. For each formulation, standard deviations are calculated based on the results from 5 samples.

	Young's Modulus (MPa)	Elongation at Break (%)	Fracture/Ultimate Strength (MPa)	Toughness (10 ⁶ ·J/m ³)
Resin (neat)	0.8 ± 0.1	153.2 ± 9.1	0.92 ± 0.06	0.78 ± 0.01
rHEMA	0.9 ± 0.1	154.1 ± 9.5	1.00 ± 0.07	0.83 ± 0.13
rEHA	1.0 ± 0.1	159.1 ± 8.5	1.06 ± 0.04	0.93 ± 0.07
gResin	6.9 ± 0.6	92.2 ± 8.4	1.22 ± 0.07	0.92 ± 0.14
gHEMA	8.1 ± 0.7	71.2 ± 2.7	1.51 ± 0.06	0.85 ± 0.05
gEHA	7.7 ± 0.5	72.1 ± 5.9	1.31 ± 0.08	0.77 ± 0.09

Frequency Sweep DMA

Figure S2. DMA frequency sweep results for printed base resin: (a) storage modulus. (b) loss

modulus.

Figure S3. DMA frequency sweep results for printed formulated resin with HEMA: (a) storage modulus. (b) loss modulus.

Figure S4. DMA frequency sweep results for printed formulated resin with EHA: (a) storage

modulus. (b) loss modulus.

Figure S5. DMA frequency sweep results for printed base resin with glass microspheres: (a) storage modulus. (b) loss modulus.

Figure S6. DMA frequency sweep results for printed formulated resin with HEMA and glass microspheres: (a) storage modulus. (b) loss modulus.

Figure S7. DMA frequency sweep results for printed formulated resin with EHA and glass microspheres: (a) storage modulus. (b) loss modulus.

Designs of printed structures

The resolution print design with vertical walls and trenches was inspired and created following previous work from Shah et al.¹

Figure S8. CAD file of resolution print with vertical walls and trenches.

Figure S9. CAD file of mixing element. (a) side view; (b) isometric view.

 Shah, D. M.; Morris, J.; Plaisted, T. A.; Amirkhizi, A. V.; Hansen, C. J. Highly Filled Resins for DLP-Based Printing of Low Density, High Modulus Materials. *Addit. Manuf.* 2021, *37* (August 2020), 101736. https://doi.org/10.1016/j.addma.2020.101736.