Supporting Information

Electrochemically stable Ag@Au-Co core-shell nanowire network transparent conductor for flexible self-powered Zn-based electrochromic smart device

He Zhang^{a,b}, Jiayun Feng^a, Fangyuan Sun^b, Dongyan Zhou^b, Ge Cao^b, Zhuohuan Wu^a, Shang Wang^a, Fengyu Su^{c,*}, Yanqing Tian^{b,d,*}, Yanhong Tian^{a,*}

. ^aState Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, China

^bDepartment of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China

^cAcademy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China

^dKey Laboratory of Energy Conversion and Storage Technology (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China

*Email: fysu@sustech.edu.cn, tianyq@sustech.edu.cn, tianyh@hit.edu.cn.

Fig. S1 The transmittance spectra of PET substrate.

Fig. S2 The installation for vacuum filtration.

Fig. S3 The TEM images of single (a) Ag NW and (b) Ag@Au-Co NW.

Fig. S4 Relative resistance variation of AgNW FTCs and AgNW@Au-Co FTCs during cyclic inward bending.

Fig. S5 The CV curves of ECD under flat and bended state.