

Supporting Information

First Azulene Liquid Crystal with de Vries behavior and a SmA Re-entrant Phase

Finn Schulz,^a Bianca Wank,^a Pierre Nacke,^b Wolfgang Frey^a and Sabine Laschat^{*,a}

^a *Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany*

^b *Institut für Physikalische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany*

Contact:

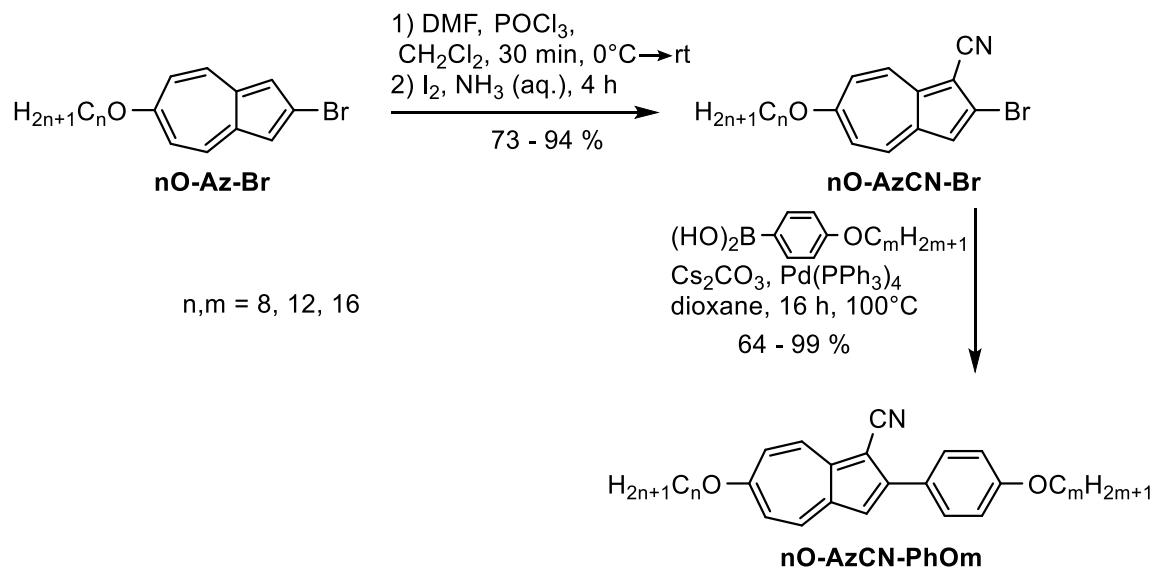
Sabine Laschat; sabine.laschat@oc.uni-stuttgart.de.

Table of Contents

1. General methods	2
2. Syntheses	3
2.1 General Procedures.....	4
2.2 Syntheses.....	4
3. Differential Scanning Calorimetry.....	12
4. Polarizing Optical Microscopy (POM).....	13
5. X-Ray Diffractometry	15
6. Single Crystal X-Ray Data.....	16
7. Literature	23
8. NMR-spectra.....	23

1. General methods

All chemicals were, unless otherwise stated, used without further purification. Anhydrous THF was obtained by refluxing the solvent over potassium. The eluents for chromatography (hexanes, low boiling, and ethyl acetate EtOAc) were distilled prior to use. ¹H NMR spectra were measured using the Bruker Avance 500, and Bruker Avance 700 spectrometers at 500 MHz, and 700 MHz as well as ¹³C NMR spectra at 126 MHz, and 176 MHz, respectively. To assign the signals of the ¹H and ¹³C NMR spectra, COSY, HSQC, and HMBC measurements were carried out. FT-IR spectra were measured on a Bruker Vektor 22 with a MKII Golden Gate Single Reflection Diamond ATR. Absorption bands were rounded to integer wavenumbers / cm⁻¹ and the absorption intensities were classified as follows: w (weak), m (medium), s (strong). Mass spectra (MS) and high-resolution mass spectra (HRMS) were measured by electrospray ionisation (ESI) or electron impact ionisation (EI) with a Bruker MicrOTOF-Q spectrometer or electron impact ionisation (EI) with a *Varian MAT 711* spectrometer. For thin layer chromatography, silica gel 60 F254 glass plates (layer thickness of 0.25 mm) on aluminium (pore size 60 Å) from Merck were used. Column chromatography was performed using silica gel (particle diameter of 40 – 60 µm) from Fluka. A polarizing optical microscope Olympus BX 50, equipped with a Linkam LTS heating stage, was used. Temperature regulation was carried out with the control units TP93 and LNP from Linkam ($\Delta T = \pm 1$ K). Photographs were saved with a digital camera ColorView from Soft Imaging System using the software analySIS. For differential scanning calorimetry, a DSC822e from the company Mettler Toledo was employed. The compounds were analysed in 40 µL sealed aluminium pans. Heating and cooling rates of 5 K min⁻¹ were employed. Phase transition temperatures and enthalpies were determined by onset values using the software STARe 7.01.


Measurements of the X-ray diffraction were performed using a Bruker AXS Nanostar C with a ceramic tube generator (1500 W) having cross-coupled Goebel mirrors providing monochromatic Cu K α radiation (1.5405 Å). Diffraction patterns were recorded with Bruker HI-STAR or VÅNTEC 500 detectors. Calibration was carried out using the diffraction pattern of silver behenate at room temperature. The compounds were examined in sealed glass capillaries from Hilgenberg GmbH (external diameter of 0.7 mm, wall thickness 0.01 mm). Measured values were analysed with the software SAXS from Bruker. The diffraction patterns were further processed using the software Datasqueeze and Origin 2018Pro. For UV/Vis spectroscopy solvents were obtained in spectroscopic grade from the

supplier and were not further purified. For absorption spectra, a Perkin Elmer Lambda 35 spectrometer was employed. Fits were obtained using origin software and the goodness of fit judged by the reduced χ^2 value and residual plot shape. Optical tilt angles were measured by manually rotating the sample and observing the position of maximum darkness of two opposite tilt domains. Optical birefringence Δn was precisely measured using a Phi-Viz Imaging System from Polaviz (APSYS Inc.) mounted on a Leica DM 2700P polarizing microscope fitted with a HCS 302 hot stage (Instec). Samples were filled in rubbed nylon liquid crystal test cells (AWAT1, Poland) of 3.0 μm thickness in the isotropic phase. The fully automated system uses three liquid crystal variable retarders replacing the polarizer and analyzer of the microscope. Polychromatic light with an average wavelength of 550 nm was used and the intensity of the light detected with a digital camera for a maximum of 1900 x 1200 pixels. By cycling through different polarization states, a 2D map of the optic axis and the retardance of the sample were obtained.

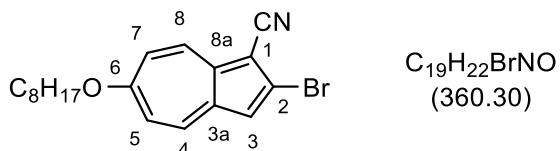
2. Syntheses

The synthesis of phenylboronic acids is well known in the literature and described elsewhere.

The synthesis of 6-alkoxy-2-bromoazulenes is described in our previous paper.¹

2.1 General Procedures

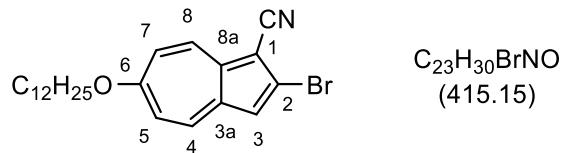
General procedure for the nitrilation of 6-alkoxy-2-bromoazulenes-bromoazulenes nO-Az-Br via Vilsmeier-Haack reaction at the example of 12O-Az-Br (GP 1)


Adapting a procedure of Ushijima,² POCl₃ (9.5 µL, 16 mg, 102 µmol) was slowly added to dry DMF (1 mL) at 0 °C. The solution was then stirred for 30 min. **12O-Az-Br** (40 mg, 102 µmol) in dry CH₂Cl₂ (10 mL) was cooled down to 0 °C and then added slowly to the reaction mixture. After warming up to room temperature overnight, aq. ammonia (30 Vol%, 5 mL) was added dropwise. During the addition, a color change from orange to green to red was observed within seconds. Subsequently, iodine (52 mg, 204 µmol) was added, and the reaction was stirred vigorously for 4 h, and subsequently quenched with water (10 mL). After phase separation, the organic phase was washed with sat. NaHSO₃ solution and water (each 2x; 10 mL) and dried over MgSO₄. The solution was filtered over a silica pad. Careful elution of the orange spot with CH₂Cl₂, without simultaneously eluting the more polar yellow spot afforded the pure **12O-AzCN-Br** as an orange solid in 94 % yield (40 mg, 96 µmol).

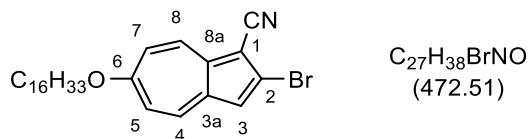
General Procedure for Suzuki-coupling of nO-AzCN-Br with aryl boronic acids at the example of 12O-AzCN-Br (GP2).

C12O-AzCN-Br (38 mg, 91 µmol), (4-dodecyloxyphenyl) boronic acid (42 mg, 137 µmol) and Cs₂CO₃ (89 mg, 274 mmol) were dissolved in dioxane (5 mL). The mixture was degassed for 30 min, then Pd(PPh₃)₄ (5 mg, 5 µmol) was added and the reaction was refluxed for 16 h. After cooling down, Celite was added and the solvent was removed under reduced pressure. Purification was performed by column chromatography on silica with an adequate solvent (hexanes / CH₂Cl₂ 1 : 1) and subsequent recrystallization from isopropanol. Azulene **12O-AzCN-PhO12** was obtained as an orange solid in 64 % yield (35 mg, 59 µmol).

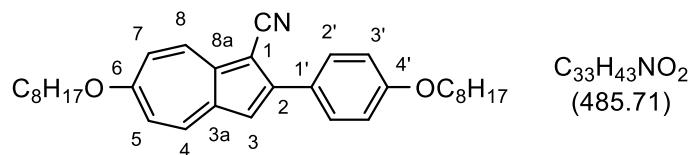
2.2 Syntheses


2-Bromo-6-octyloxyazulene-1-carbonitrile (8O-AzCN-Br)

Synthesis according to GP1: **8O-Az-Br** (70 mg, 209 µmol), POCl₃ (20 µL, 209 µmol), DMF (3 mL), CH₂Cl₂ (10 mL), I₂ (106 mg, 418 µmol), NH₃ (30 vol%, 10 mL); yield: orange solid (70 mg, 194 µmmol, 93 %); melting point (POM): 88 °C; ¹H NMR (500 MHz, CDCl₃):


δ = 0.89 (t, J = 6.8 Hz, 3H, CH₃), 1.24–1.42 (m, 8H, CH₂), 1.46–1.54 (m, 2H, OCH₂CH₂CH₂), 1.83–1.93 (m, 2H, OCH₂CH₂), 4.16 (t, J = 6.5 Hz, 2H, OCH₂), 7.09–7.11 (m, 1H, 5-H), 7.11–7.13 (m, 1H, 7-H), 7.16 (s, 1H, 3-H), 8.18 (d, J = 11.2 Hz, 1H, 4-H), 8.36 (d, J = 11.1 Hz, 1H, 8-H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 14.1 (CH₃), 22.7, 26.0, 29.0, 29.2, 29.3, 31.8 (CH₂), 69.7 (OCH₂), 99.4 (C-1), 115.4 (C-7), 116.3 (C-2), 116.9 (C-5), 119.9 (C-3), 124.3 (CN), 135.1 (C-8), 137.1 (C-3a, C-4), 138.5 (C-8a), 169.1 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 3099 (w), 2948 (w), 2923 (m), 2852 (w), 2204 (m), 1581 (m), 1544 (w), 1499 (w), 1440 (w), 1406 (m), 1389 (s), 1294 (w), 1272 (m), 1200 (s), 1127 (w), 1020 (w), 979 (w), 901 (w), 855 (m), 825 (w), 792 (w), 766 (w), 730 (w), 713 (w), 644 (w), 622 (w), 504 (w) cm⁻¹; MS (ESI): m/z for C₁₉H₂₃BrNO⁺ calc.: 360.10 [M+H]⁺, found.: 360.09; HRMS (ESI): m/z for C₁₉H₂₃BrNO⁺ calc.: 360.0958 [M+H]⁺, found: 360.0943.

2-Bromo-6-dodecyloxyazulene-1-carbonitrile (12O-AzCN-Br)


Synthesis according to GP1; **12O-Az-Br** (40 mg, 102 μmol), POCl₃ (10 μL , 102 μmol), DMF (1 mL), CH₂Cl₂ (10 mL), I₂ (52 mg, 204 μmol), NH₃ (30 vol%, 5 mL); yield: orange solid (40 mg, 96 μmmol , 94 %); melting point (POM): 91 °C; ¹H NMR (500 MHz, CDCl₃): δ = 0.88 (t, J = 6.9 Hz, 3H, CH₃), 1.20–1.41 (m, 16H, CH₂), 1.46–1.54 (m, 2H, OCH₂CH₂CH₂), 1.84–1.92 (m, 2H, OCH₂CH₂), 4.15 (t, J = 6.5 Hz, 2H, OCH₂), 7.08–7.13 (m, 2H, 5-H, 7-H), 7.15 (s, 1H, 3-H), 8.17 (d, J = 11.3 Hz, 1H, 4-H), 8.35 (d, J = 11.1 Hz, 1H, 8-H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 14.2 (CH₃), 22.7, 26.0, 29.0, 29.3, 29.4, 29.6, 29.6, 29.7, 29.7, 31.9 (CH₂), 69.7 (OCH₂), 99.4 (C-1), 115.5 (C-5/C-7), 116.3 (C-2), 116.8 (C-5/C-7), 119.8 (C-3), 124.2 (CN), 135.1 (C-8), 137.0, 137.1 (C-4, C-3a), 138.5 (C-8a), 169.1 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 2918 (m), 2849 (m), 2203 (m), 1582 (s), 1546 (w), 1495 (w), 1468 (w), 1435 (w), 1419 (w), 1389 (s), 1288 (w), 1251 (s), 1195 (s), 1127 (w), 1016 (m), 988 (m), 972 (m), 899 (m), 840 (m), 828 (m), 803 (w), 778 (w), 760 (m), 721 (w), 710 (m), 619 (w), 541 (w), 506 (w) cm⁻¹; MS(ESI): m/z für C₂₃H₃₁BrNO⁺ calc.: 416.16 [M+H]⁺, found: 416.16; HRMS(ESI): m/z für C₂₃H₃₁BrNO⁺ calc.: 416.1584 [M+H]⁺, found.: 416.1585.

2-Bromo-6-hexadecyloxyazulene-1-carbonitrile (16O-AzCN-Br)

Synthesis according to GP1; **16O-Az-Br** (89 mg, 188 μmol), POCl_3 (18 μL , 188 μmol), DMF (1 mL), CH_2Cl_2 (10 mL), I_2 (95 mg, 376 μmol), NH_3 (30 vol%, 10 mL); yield: orange solid (65 mg, 188 μmol , 73 %); melting point (POM): 93 $^{\circ}\text{C}$; ^1H NMR (700 MHz, CDCl_3): δ = 0.88 (t, J = 7.1 Hz, 3H, CH_3), 1.21–1.41 (m, 24H, CH_2), 1.47–1.53 (m, 2H, $\text{OCH}_2\text{CH}_2\text{CH}_2$), 1.86–1.91 (m, 2H, OCH_2CH_2), 4.15 (t, J = 6.5 Hz, 2H, OCH_2), 7.08–7.12 (m, 2H, 5-H, 7-H), 7.15 (s, 1H, 3-H), 8.17 (d, J = 11.1 Hz, 1H, 4-H), 8.35 (d, J = 11.0 Hz, 1H, 8-H) ppm; ^{13}C NMR (176 MHz, CDCl_3): δ = 14.1 (CH_3), 22.7, 25.9, 25.9, 28.9, 29.0, 29.3, 29.4, 29.5, 29.6, 29.7, 29.7, 29.7, 29.7, 31.9 (CH_2), 69.7 (OCH_2), 99.4 (C-1), 115.5 (C-7), 116.3 (C-2), 116.8 (C-5), 119.8 (C-3), 124.2 (CN), 135.1 (C-8), 137.0 (C-3a), 137.1 (C-4), 138.5 (C-8a), 169.1 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 2917 (s), 2848 (s), 2204 (m), 1583 (m), 1546 (w), 1495 (w), 1468 (m), 1436 (m), 1419 (w), 1389 (m), 1287 (w), 1251 (m), 1197 (s), 1038 (w), 1012 (m), 988 (m), 899 (m), 842 (s), 826 (m), 778 (m), 759 (m), 721 (m), 711 (m), 619 (w), 541 (w), 506 (m) cm^{-1} ; MS (ESI): m/z for $\text{C}_{33}\text{H}_{43}\text{NO}_2^+$ calc.: 472.22 $[\text{M}+\text{H}]^+$, found.: 472.22; HRMS (ESI): m/z for $\text{C}_{27}\text{H}_{39}\text{BrNO}^+$ calc.: 472.2210 $[\text{M}+\text{H}]^+$, found.: 472.2212.

6-Octyloxy-2-(4-octyloxyphenyl)azulene-1-carbonitrile (8O-AzCN-PhO8)

Synthesis according to GP2; **8O-AzCN-Br** (100 mg, 278 μmol), 4-octyloxyphenylboronic acid (208 mg, 833 μmol); $\text{Pd}(\text{PPh}_3)_4$ (32 mg, 28 μmol), Cs_2CO_3 (271 mg, 833 μmol), dioxane (5 mL); yield: orange solid (114 mg, 235 μmol , 85 %); melting behavior: Cr 101 °C SmA 155 °C I; ^1H NMR (500 MHz, CDCl_3): δ = 0.87–0.92 (m, 6H, CH_3), 1.24–1.42 (m, 16H, CH_2), 1.44–1.54 (m, 4H, $\text{OCH}_2\text{CH}_2\text{CH}_2$), 1.78–1.91 (m, 4H, OCH_2CH_2), 4.03 (t, J = 6.6 Hz, 2H, 4'- OCH_2), 4.14 (t, J = 6.5 Hz, 2H, 6- OCH_2), 7.00–7.04 (m, 2H, 3'-H), 7.04–7.08 (m, 2H, 5-H, 7-H), 7.34 (s, 1H, 3-H), 7.95–8.00 (m, 2H, 2'-H), 8.18 (d, J = 11.5 Hz, 1H, 4-H), 8.42 (d, J = 10.7 Hz, 1H, 8-H) ppm; ^{13}C NMR (126 MHz, CDCl_3): δ = 14.1 (CH_3), 22.7, 22.7, 26.0, 26.1, 29.1, 29.2, 29.3, 29.3, 29.4, 31.8, 31.9 (CH_2), 68.2 (4'- OCH_2), 69.4 (6- OCH_2), 93.7 (C-1), 114.0 (C-7), 115.0 (C-3'), 116.4 (C-3), 116.9 (C-5), 118.9 (CN), 127.2 (C-1'), 129.5 (C-2'), 134.6 (C-8), 136.7 (C-4), 138.0 (C-3a), 141.0 (C-8a), 148.0 (C-2), 159.8 (C-4'), 167.9 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 3085 (w), 3044 (w), 2952 (m), 2918 (s), 2869 (m), 2851 (s), 2730 (w), 2387 (w), 2202 (m), 1605 (m), 1581 (s), 1544 (m), 1526 (m), 1462 (s), 1430 (s), 1408 (m), 1388 (m), 1378 (m), 1318 (w), 1301 (w), 1288 (m), 1269 (m), 1253 (s), 1210 (m), 1196 (s), 1185 (s), 1142 (w), 1129 (w), 1084 (w), 1069 (w), 1031 (m), 1018 (m), 1000 (m), 982 (m), 962 (w), 934 (w), 905 (m), 872 (w), 845 (m), 830 (s), 797 (m), 772 (w), 734 (m), 722 (m), 636 (w), 622 (w), 536 (w), 507 (m) cm^{-1} ; MS (ESI): m/z for $\text{C}_{33}\text{H}_{43}\text{NO}_2^+$ calc.: 486.3 $[\text{M}+\text{H}]^+$, found.: 486.3; HRMS (ESI): m/z for $\text{C}_{33}\text{H}_{44}\text{NO}_2^+$ calc.: 486.3367 $[\text{M}+\text{H}]^+$, found.: 486.3355.

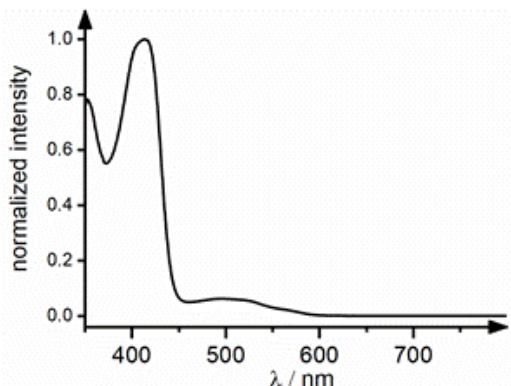
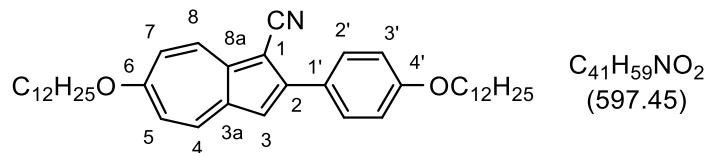



Figure S1: Normalized UV/VIS spectra of **8O-AzCN-PhO8** in chloroform.

6-Dodecyloxy-2-(4-dodecyloxyphenyl)azulene-1-carbonitrile (12O-AzCN-PhO12)

Synthesis according to GP2; **12O-AzCN-Br** (38 mg, 91 μmol), 4-dodecyloxyphenyl boronic acid (42 mg, 137 μmol); $\text{Pd}(\text{PPh}_3)_4$ (5 mg, 5 μmol), Cs_2CO_3 (89 mg, 274 μmol), dioxane (5 mL); yield: orange solid (35 mg, 59 μmol , 64 %); melting behavior: Cr 90 °C SmC 133 °C SmA 150 °C I; ^1H NMR (500 MHz, CDCl_3): δ = 0.88 (t, J = 6.8 Hz, 6H, CH_3), 1.21–1.42 (m, 32H, CH_2), 1.43–1.55 (m, 4H, $\text{OCH}_2\text{CH}_2\text{CH}_2$), 1.76–1.94 (m, 4H, OCH_2CH_2), 4.02 (t, J = 6.6 Hz, 2H, C-4'-OCH₂), 4.13 (t, J = 6.5 Hz, 2H, C-6-OCH₂), 6.99–7.03 (m, 2H, 3'-H), 7.03–7.08 (m, 2H, 5-H, 7-H), 7.33 (s, 1H, 3-H), 7.94–8.00 (m, 2H, 2'-H), 8.17 (d, J = 11.1 Hz, 1H, C-4)), 8.40 (d, J = 10.8 Hz, 1H, C-8) ppm; ^{13}C NMR (126 MHz, CDCl_3): δ = 14.2 (CH_3), 22.7, 26.0, 26.1, 29.1, 29.3, 29.4, 29.4, 29.5, 29.6, 29.6, 29.6, 29.7, 29.7, 32.0 (CH_2), 68.2 (C-4'-OCH₂), 69.4 (C-6-OCH₂), 93.7 (C-1), 114.0 (C-5/C-7), 115.0 (C-3'), 116.4 (C-3), 116.8 (C-5/C-7), 118.9 (C-2), 127.2 (C-1'), 129.5 (C-2'), 134.6 (C-8), 136.7 (C-4), 138.0 (C-3a), 141.0 (C-8a), 147.9 (CN), 159.8 (C-4'), 167.9 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 2953 (m), 2917 (s), 2850 (s), 2198 (m), 1606 (s), 1583 (m), 1545 (m), 1526 (m), 1463 (s), 1431 (s), 1394 (w), 1317 (w), 1288 (m), 1255 (s), 1197 (s), 1183 (s), 1158 (w), 1130 (w), 1022 (m), 1000 (m), 974 (w), 904 (w), 830 (s), 807 (w), 791 (w), 766 (w), 720 (m), 622 (w), 541 (w), 510 (w) cm^{-1} ; MS(ESI): m/z for $\text{C}_{41}\text{H}_{59}\text{NNaO}_2^+$ calc.: 620.44 [M+Na]⁺, found.: 620.43; HRMS(ESI): m/z for $\text{C}_{41}\text{H}_{59}\text{NNaO}_2^+$ calc.: 620.4438 [M+Na]⁺, found.: 620.4349.

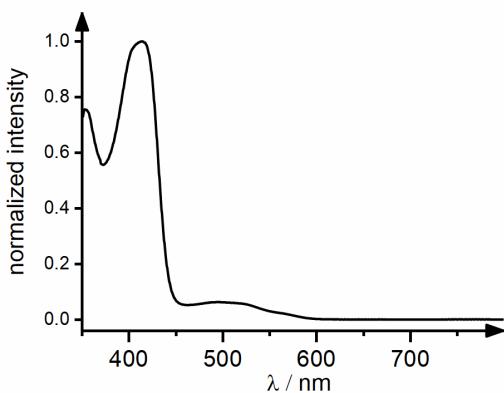
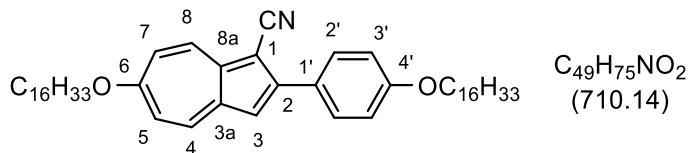



Figure S2: Normalized UV/VIS spectra of **12O-AzCN-PhO12** in chloroform.

6-Hexadecyloxy-2-(4-hexadecyloxyphenyl)azulene-1-carbonitrile (16O-AzCN-PhO16)

Synthesis according to GP2; **16O-AzCN-Br** (16 mg, 34 μmol), 4-hexadecyloxyphenyl boronic acid (25 mg, 68 μmol); $\text{Pd}(\text{PPh}_3)_4$ (4 mg, 3 μmol), Cs_2CO_3 (33 mg, 102 μmol), dioxane (3 mL); yield: orange solid (17 mg, 34 μmol , 71 %); melting behavior: Cr 94 $^{\circ}\text{C}$ SmC 135 $^{\circ}\text{C}$ SmA 138 $^{\circ}\text{C}$ I; ^1H NMR (700 MHz, CDCl_3): δ = 0.88 (t, J = 7.0 Hz, 6H, CH_3), 1.21–1.41 (m, 48H, CH_2), 1.44–1.53 (m, 4H, $\text{OCH}_2\text{CH}_2\text{CH}_2$), 1.82 (tt, J = 6.8 Hz, 6.6 Hz, 2H, OCH_2CH_2), 1.88 (tt, J = 6.7 Hz, 6.5 Hz, 2H, OCH_2CH_2), 4.03 (t, J = 6.6 Hz, 2H, 4'- OCH_2), 4.14 (t, J = 6.5 Hz, 2H, 6-OCH₂), 7.00–7.03 (m, 2H, 3'-H), 7.05–7.09 (m, 2H, 5-H, 7-H), 7.35 (s, 1H, 3-H), 7.93–8.00 (m, 2H, 2'-H), 8.19 (d, J = 10.9 Hz, 1H, 4-H), 8.42 (d, J = 10.7 Hz, 1H, 8-H) ppm; ^{13}C NMR (176 MHz, CDCl_3): δ = 14.2 (CH_3), 22.7, 26.0, 26.1, 29.1, 29.3, 29.3, 29.4, 29.4, 29.6, 29.6, 29.6, 29.6, 29.7, 29.7, 29.7, 29.7, 29.7, 32.0 (CH_2), 68.2 (4'- OCH_2), 69.4 (6-OCH₂), 93.7 (C-1), 114.0 (C-7), 115.1 (C-3'), 116.4 (C-3), 116.9 (C-5), 118.9 (CN), 127.2 (C-1'), 129.5 (C-2'), 134.6 (C-8), 136.7 (C-4), 138.0 (C-3a), 141.0 (C-8a), 148.0 (C-2), 159.8 (C-4), 167.9 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 2954 (w), 2916 (s), 2850 (s), 2204 (w), 1606 (w), 1584 (w), 1546 (w), 1526 (w), 1465 (m), 1432 (m), 1288 (w), 1256 (m), 1199 (m), 1043 (w), 1018 (w), 999 (w), 904 (w), 828 (w), 807 (w), 788 (w), 719 (w), 622 (w), 509 (w) cm^{-1} ; MS (EI): m/z for $\text{C}_{37}\text{H}_{52}\text{NO}_2^+$ calc.: 709.6 [M]⁺, found: 709.6; HRMS (ESI): m/z for $\text{C}_{37}\text{H}_{52}\text{NO}_2\text{Na}^+$ calc.: 732.5690 [M+Na]⁺, found.: 732.5690.

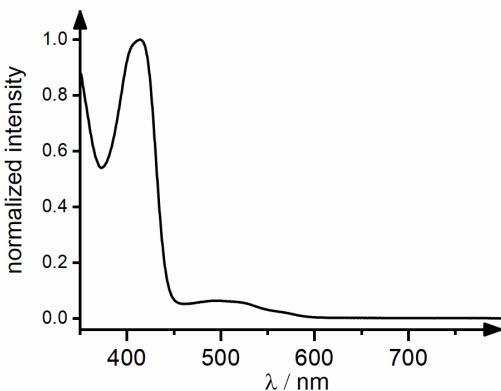
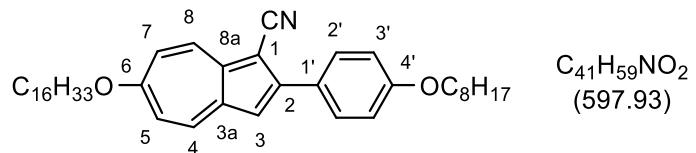



Figure S3: Normalized UV/VIS spectra of **16O-AzCN-PhO16** in chloroform.

6-Hexadecyloxy-2-(4-octyloxyphenyl)azulene-1-carbonitrile (16O-AzCN-PhO8)

Synthesis according to GP2; **16O-AzCN-Br** (44 mg, 93 μ mol), 4-octyloxyphenylboronic acid (47 mg, 186 μ mol); $Pd(PPh_3)_4$ (11 mg, 9 μ mol), Cs_2CO_3 (91 mg, 279 μ mol), dioxane (5 mL); yield: orange solid (42 mg, 70 μ mol, 75 %); melting behavior: Cr 86 $^{\circ}$ C SmC 137 $^{\circ}$ C SmA 151 $^{\circ}$ C I; 1H NMR (700 MHz, $CDCl_3$): δ = 0.86–0.92 (m, 6H, CH_3), 1.20–1.42 (m, 32H, CH_2), 1.46–1.53 (m, 4H, $OCH_2CH_2CH_2$), 1.79–1.84 (m, 2H, OCH_2CH_2), 1.84–1.89 (m, 2H, OCH_2CH_2), 4.02 (t, J = 6.6 Hz, 2H, 6-OCH₂), 4.13 (t, J = 6.5 Hz, 2H, 4'-OCH₂), 7.00–7.03 (m, 2H, 3'-H), 7.04–7.07 (m, 2H, 5-H, 7-H), 7.34 (s, 1H, 3-H), 7.94–8.00 (m, 2H, 2'-H), 8.17 (d, J = 11.2 Hz, 1H, 4-H), 8.40 (d, J = 10.8 Hz, 1H, 8-H) ppm; ^{13}C NMR (176 MHz, $CDCl_3$): δ = 14.1, 14.1 (CH_3), 22.7, 22.7, 26.0, 26.1, 29.1, 29.3, 29.3, 29.4, 29.4, 29.6, 29.6, 29.7, 29.7, 29.7, 31.9, 32.0 (CH_2), 68.2 (4'-OCH₂), 69.4 (6-OCH₂), 93.7 (C-1), 114.0 (C-7), 115.1 (C-3'), 116.4 (C-3), 116.8 (C-5), 118.9 (CN), 127.2 (C-1'), 129.5 (C-2'), 134.6 (C-8), 136.7 (C-4), 138.0 (C-3a), 141.0 (C-8a), 147.9 (C-2), 159.8 (C-4'), 167.9 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 3072 (w), 3042 (w), 2956 (m), 2920 (s), 2871 (m), 2851 (s), 2729 (w), 2196 (m), 1605 (m), 1584 (m), 1546 (w), 1525 (m), 1488 (w), 1463 (m), 1425 (s), 1390 (w), 1287 (m), 1251 (s), 1198 (s), 1182 (m), 1142 (w), 1109 (w), 1087 (w), 1043 (w), 1030 (w), 1002 (w), 999 (w), 906 (w), 834 (m), 795 (w), 764 (w), 736 (m), 723 (w), 622 (w), 540 (w), 511 (w) cm^{-1} ; MS (ESI): m/z for $C_{41}H_{60}NO_2^+$ calc.: 598.46 [M+H]⁺, found.: 598.46; HRMS (ESI): m/z for $C_{41}H_{60}NO_2^+$ calc.: 598.4619 [M+H]⁺, found.: 598.4601.

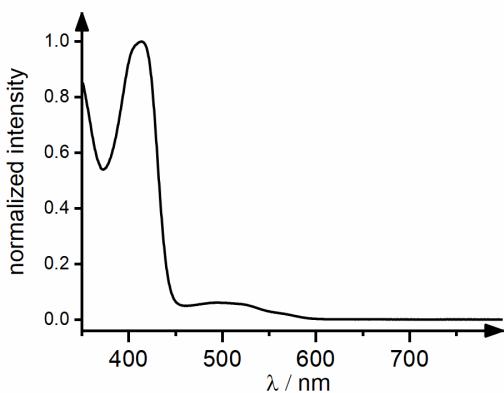



Figure S4: Normalized UV/VIS spectra of **16O-AzCN-PhO8** in chloroform.

2-(4-Hexadecyloxyphenyl)-6-octyloxyazulene-1-carbonitrile (8O-AzCN-PhO16)

Synthesis according to GP2; **8O-AzCN-Br** (77 mg, 278 μmol), 4-hexadecyloxyphenyl boronic acid (155 mg, 833 μmol); $\text{Pd}(\text{PPh}_3)_4$ (25 mg, 21 μmol), Cs_2CO_3 (209 mg, 641 μmol), dioxane (5 mL); yield: orange solid (127 mg, 212 μmol , 99 %); melting behavior: Cr 95 $^{\circ}\text{C}$ SmA 147 $^{\circ}\text{C}$ I; ^1H NMR (500 MHz, CDCl_3): δ = 0.86–0.92 (m, 6H), 1.21–1.43 (m, 32H, CH_2), 1.43–1.54 (m, 4H, $\text{OCH}_2\text{CH}_2\text{CH}_2$), 1.77–1.91 (m, 4H, OCH_2CH_2), 4.02 (t, J = 6.5 Hz, 2H, 6-OCH₂), 4.13 (t, J = 6.5 Hz, 2H, 4'-OCH₂), 7.00–7.03 (m, 2H, 3'-H), 7.03–7.08 (m, 2H, 5-H, 7-H), 7.34 (s, 1H, 3-H), 7.94–7.99 (m, 2H, 2'-H), 8.17 (d, J = 11.2 Hz, 1H, 4-H), 8.41 (d, J = 10.8 Hz, 1H, 8-H) ppm; ^{13}C NMR (126 MHz, CDCl_3): δ = 14.1, 14.2 (CH_3), 22.7, 22.7, 26.0, 26.1, 29.1, 29.2, 29.3, 29.3, 29.4, 29.4, 29.6, 29.6, 29.7, 29.7, 31.8, 32.0 (CH_2), 68.2 (4'-OCH₂), 69.4 (6-OCH₂), 93.7 (C-1), 114.0 (C-7), 115.0 (C-3'), 116.4 (C-3), 116.8 (C-5), 118.9 (CN), 127.2 (C-1'), 129.5 (C-2'), 134.6 (C-8), 136.7 (C-4), 138.0 (C-3a), 141.0 (C-8a), 147.9 (C-2), 159.8 (C-4'), 167.9 (C-6) ppm; FT-IR (ATR): $\tilde{\nu}$ = 2919 (s), 2851 (s), 2197 (w), 1606 (m), 1584 (m), 1546 (w), 1526 (w), 1464 (m), 1431 (m), 1392 (w), 1289 (w), 1257 (m), 1199 (m), 1183 (m), 1027 (w), 1000 (w), 904 (w), 832 (m), 793 (w), 771 (w), 722 (w), 622 (w), 510 (w) cm^{-1} ; MS (ESI): m/z for $\text{C}_{41}\text{H}_{60}\text{NO}_2^+$ calc.: 598.46 [$\text{M}+\text{H}]^+$, found.: 598.46; HRMS (ESI): m/z for $\text{C}_{41}\text{H}_{60}\text{NO}_2^+$ calc.: 598.4619 [$\text{M}+\text{H}]^+$, found.: 598.4611.

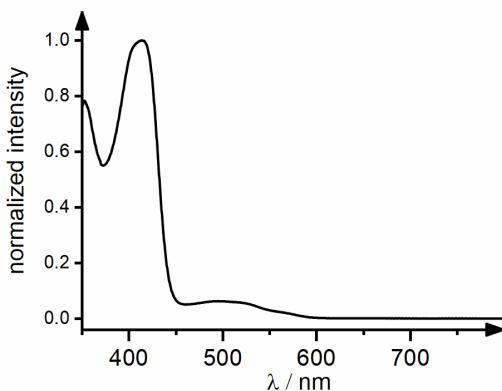


Figure S5: Normalized UV/VIS spectra of **8O-AzCN-PhO16** in chloroform.

3. Differential Scanning Calorimetry

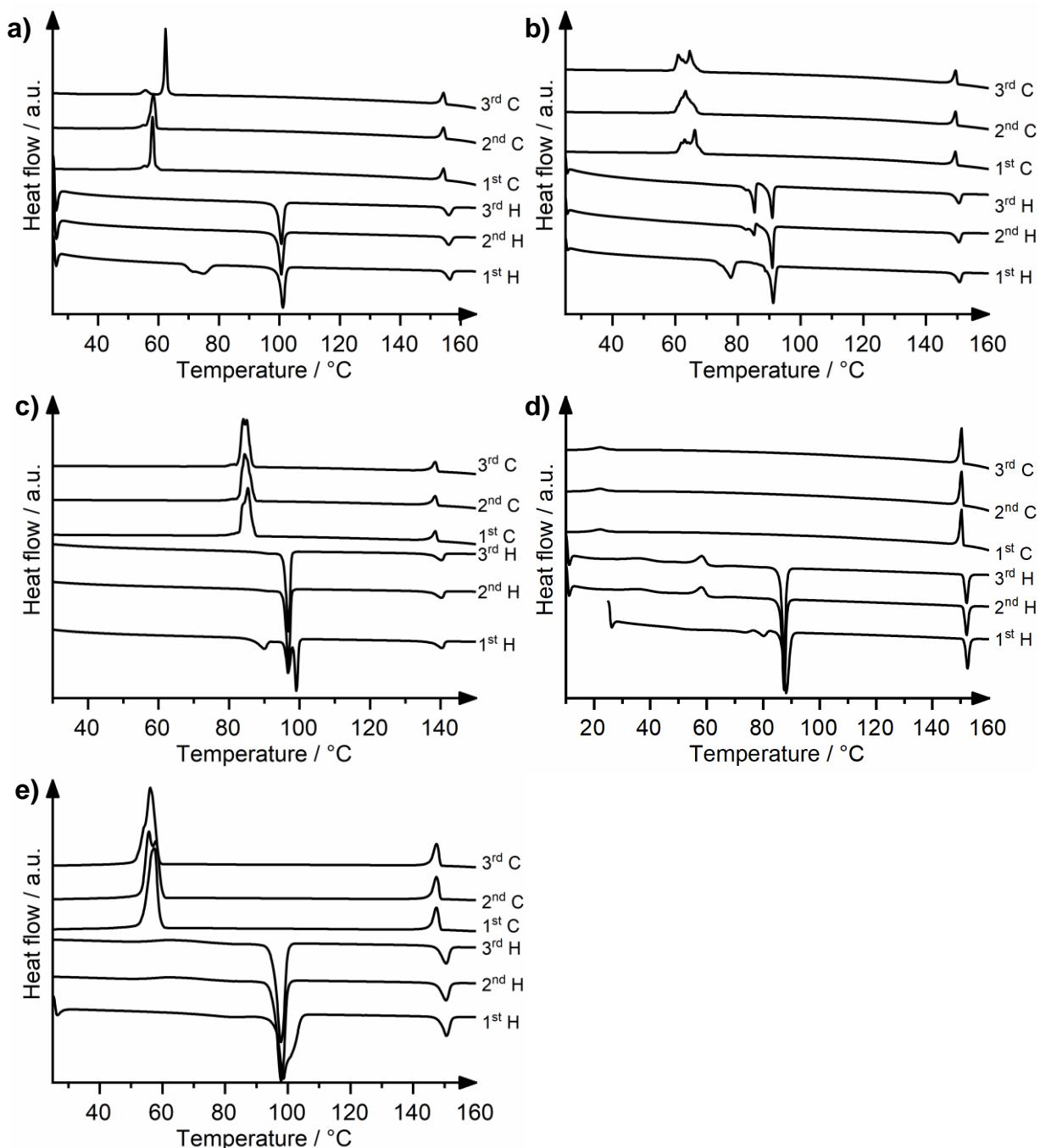


Figure S6: DSC-curves of azulenes **nO-AzCN-PhOm**: a) **8O-AzCN-PhO8** b) **12O-AzCN-PhO12** c) **16O-AzCN-PhO16** d) **16O-AzCN-PhO8** e) **8O-AzCN-PhO16**. The SmA-SmC transition is not visible. Heating / cooling rate: 5 K/min, H = Heating, C = Cooling.

4. Polarizing Optical Microscopy (POM)

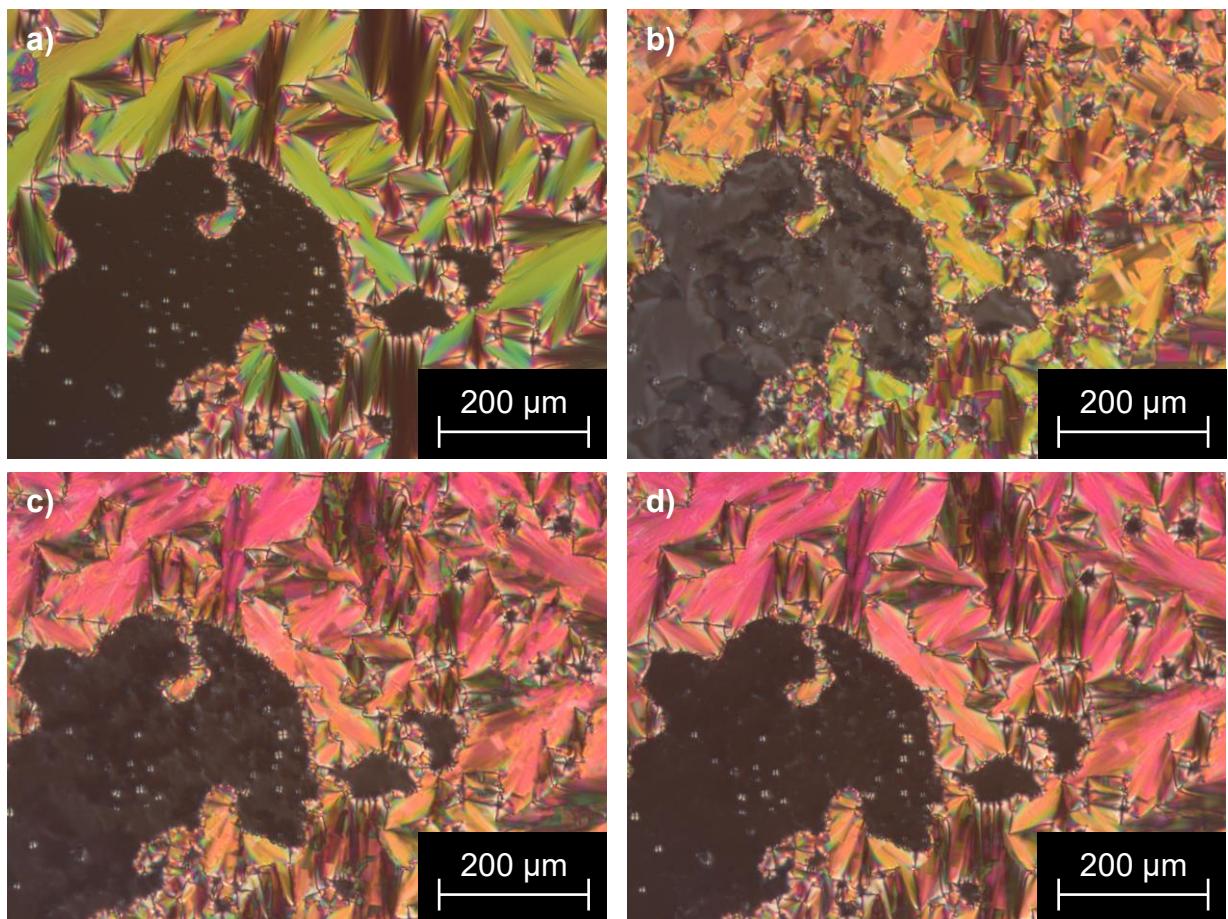


Figure S7: POM micrographs between crossed polarizers of **16O-AzCN-PhO8**: a) Fan textures and Maltese crosses of a SmA phase at 144 °C upon cooling from the isotropic liquid (cooling rate 2 K/min) that transform into b) broken fan and Schlieren textures of a SmC phase at 128 °C. c) shows the same frame of the SmC phase directly before the SmA reentrance phase at 80 °C. d) The Schlieren textures disappear and the broken fans recombine after completion of the reentrance at 75 °C.

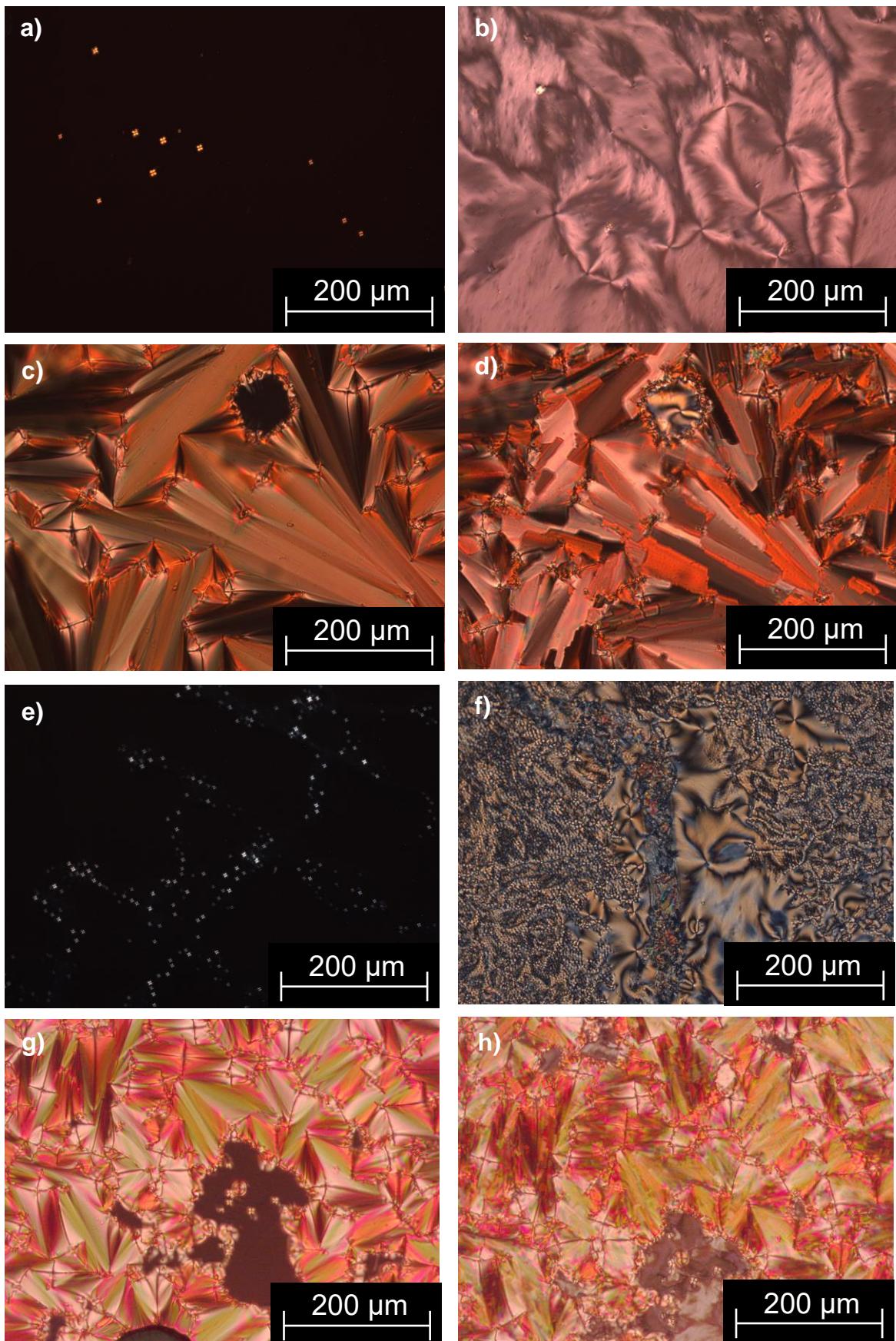


Figure S8: POM micrographs of the observed textures between crossed polarizers upon cooling from the isotropic liquid (2 K/min): a) Maltese crosses of **8O-AzCN-PhO8** at 159 °C and b) Schlieren textures at 86 °C; c) and d) fan- and broken fan textures at the same position for **12O-AzCN-PhO12** at 139 °C and 104 °C, e) and f) Maltese crosse and Schlieren textures of **16O-AzCN-PhO16** at 137 °C and 122 °C; g) and h): fan and broken fan textures of **8O-AzCN-PhO16** at 106 °C and 75 °C.

5. X-Ray Diffractometry

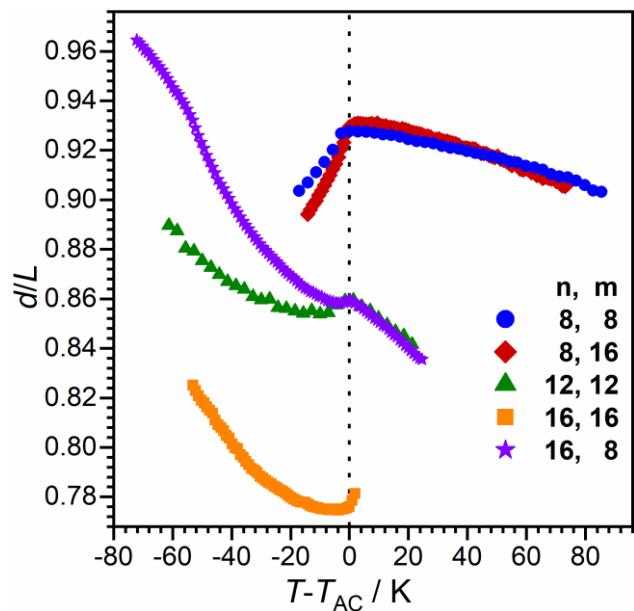


Figure S9: Plot of the relative layer thickness d/L as a function of the temperature for all investigated compounds.

6. Single Crystal X-Ray Data

The crystal structures were obtained by allowing the solvent to evaporate slowly in a NMR tube at room temeparture.

Table S1: Refinement data of the single crystal structures

Compound	8O-AzCN-PhO8	8O-AzCN-PhO16	12O-AzCN-PhO12	16O-AzCN-PhO8	16O-AzCN-PhO16
CCDC number	CCDC 2215784	CCDC 2215785	CCDC 2215787	CCDC 2215788	CCDC 2215789
formula	C33H43NO2	C41H59NO2	C41H59NO2	C41H59NO2	C49H75NO2
formula weight (g/mol)	485.68	597.89	597.89	597.89	710.10
crystal size (mm)	0.567 x 0.455 x 0.144	0.594 x 0.127 x 0.074	0.234 x 0.090 x 0.041	0.352 x 0.146 x 0.120	0.234 x 0.072 x 0.040
temperature (K)	140(2)	140(2)	145(2)	140(2)	145(2)
wavelength λ (Å)	0.71073	0.71073 A	1.54178	0.71073	0.71073
crystal system	Triclinic	Monoclinic	Triclinic	Triclinic	Triclinic
space group	P-1	P2(1)/c	P-1	P-1	P1
unit cell dimension					
a (Å)	11.2228(11)	31.2817(18)	8.1653(13)	8.1918(6)	7.2017(4)
b (Å)	12.1634(6)	5.5982(3)	9.8958(15)	9.9946(7)	15.2415(9)
c (Å)	12.4879(6)	21.1584(13)	23.177(4)	22.1775(13)	40.140(3)
α (deg)	117.700(2)	90	88.317(12)	93.108(4)	80.771(5)
β (deg)	110.189(3)	105.680(3)	80.397(12)	90.023(4)	87.247(4)
γ (deg)	92.934(3)	90	74.704(13)	104.781(4)	79.223(4)
V (Å ³)	1369.89(17)	3567.4(4)	1780.9(5)	1752.9(2)	4271.5(5)
Z	2	4	2	2	4
D_c (g/cm ³)	1.177	1.113	1.115	1.113	1.104
μ (mm ⁻¹)	0.072	0.066	0.506	0.068	0.065

F(000)	528	1312	656	656	1568
theta range for data collection	1.955 to 28.467	1.930 to 28.356	3.869 to 64.992	1.839 to 28.374	1.376 to 24.999
index ranges	-15<=h<=15, -16<=k<=16, -16<=l<=16	-41<=h<=41, -7<=k<=7, -28<=l<=28	-9<=h<=9, -11<=k<=11 -26<=l<=24	-10<=h<=10, -13<=k<=13, -29<=l<=29	-8<=h<=8, -18<=k<=18, -47<=l<=47
reflection collected/unique	34547 / 6849 [R(int) = 0.0264]	49204 / 8892 [R(int) = 0.0412]	19439 / 5823 [R(int) = 0.0529]	38246 / 8720 [R(int) = 0.0377]	53692 / 27012 [R(int) = 0.0931]
completeness to theta	100.0 %	99.9 %	96.2 %	100.0 %	99.9 %
max. and min. transmission	0.7457 and 0.7155	0.7457 and 0.7042	0.8642 and 0.7096	0.7444 and 0.7247	0.8619 and 0.8065
refinement methods	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
data/restraints/parameter	6849 / 0 / 327	8892 / 0 / 399	5823 / 0 / 399	8720 / 0 / 399	27012 / 1204 / 1881
GOF on F ²	1.043	1.039	1.013	1.001	1.004
R ₁ , wR ₂ [I > 2σ(I)]	R1 = 0.0503, wR2 = 0.1125	R1 = 0.0473, wR2 = 0.1140	R1 = 0.0483, wR2 = 0.1154	R1 = 0.0492, wR2 = 0.1080	R1 = 0.0847, wR2 = 0.1274
R ₁ , wR ₂ (all data)	R1 = 0.0726, wR2 = 0.1204	R1 = 0.0816, wR2 = 0.1248	R1 = 0.0795, wR2 = 0.1331	R1 = 0.0968, wR2 = 0.1196	R1 = 0.2623, wR2 = 0.1740
largest diff. peak and hole (e/Å ³)	0.588 and -0.374	0.283 and -0.224	0.158 and -0.208	0.265 and -0.231	0.595 and -0.337

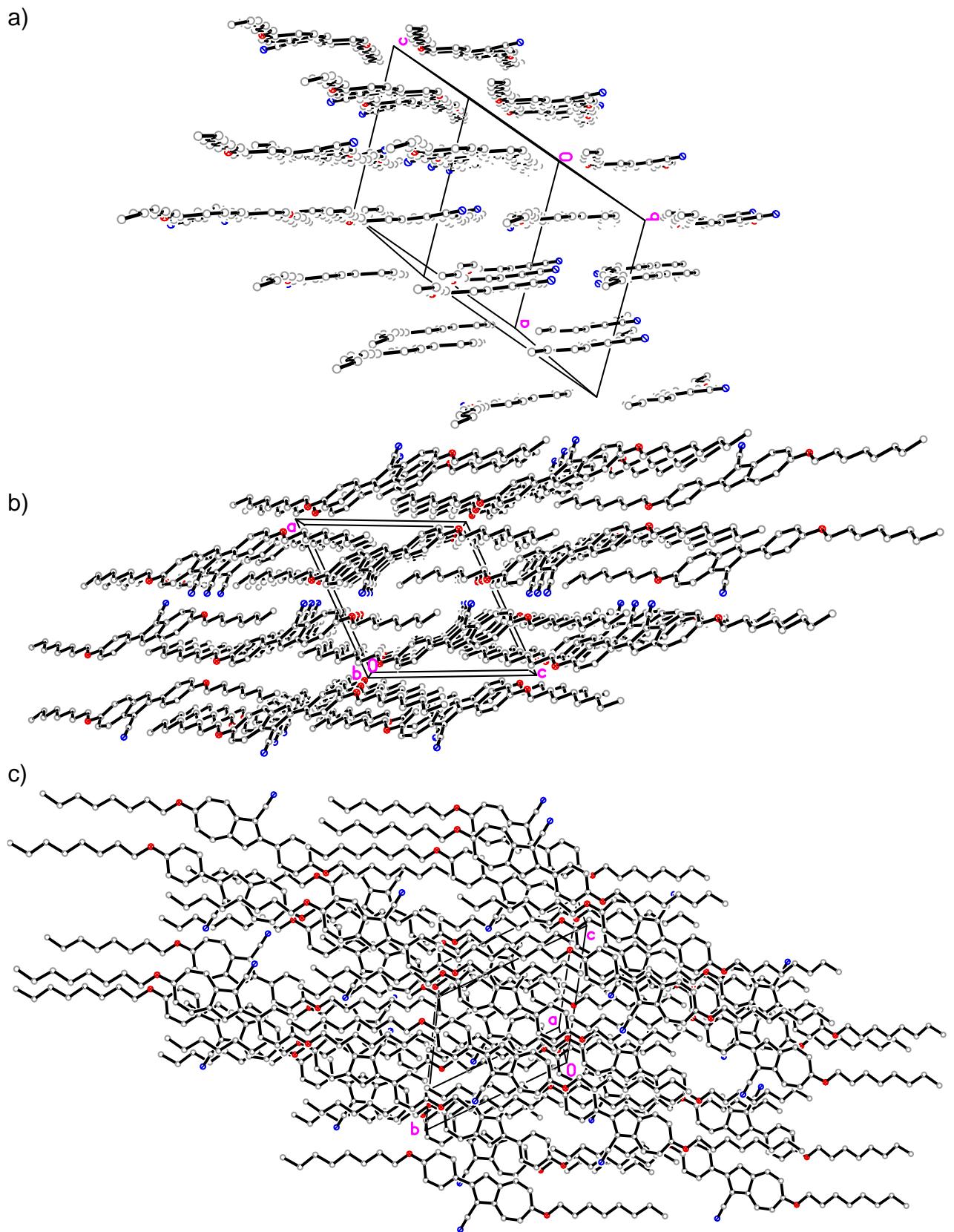


Figure S10: Single crystal X-Ray structure of **8O-AzCN-PhO8**. Point of view a) along the long molecule axis, b) along the b-axis and c) along the a-axis.

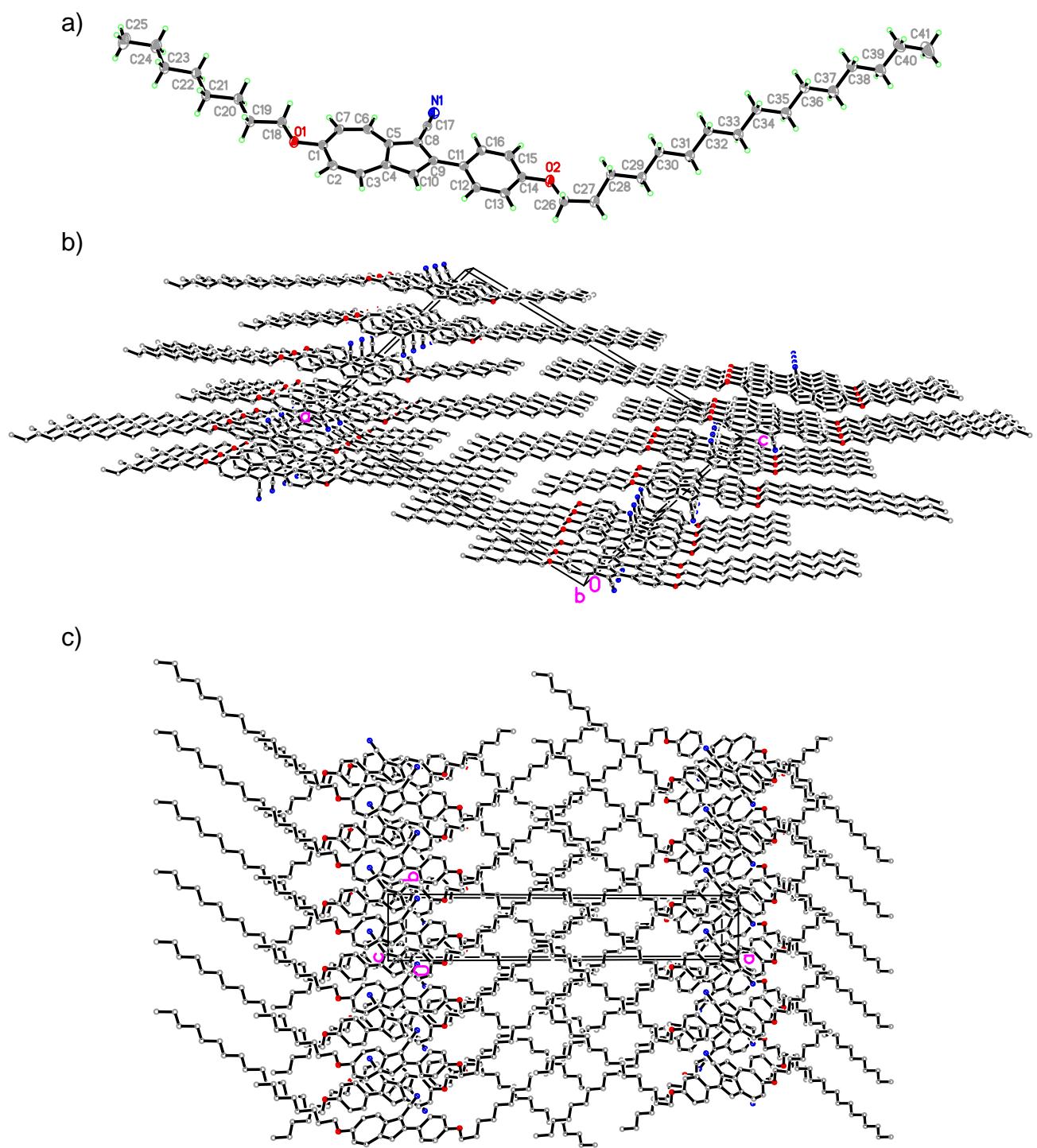


Figure S11: Single crystal X-Ray structure of **8O-AzCN-PhO16**. a) single molecule, b) point of view along the b-axis and c) along the c-axis.

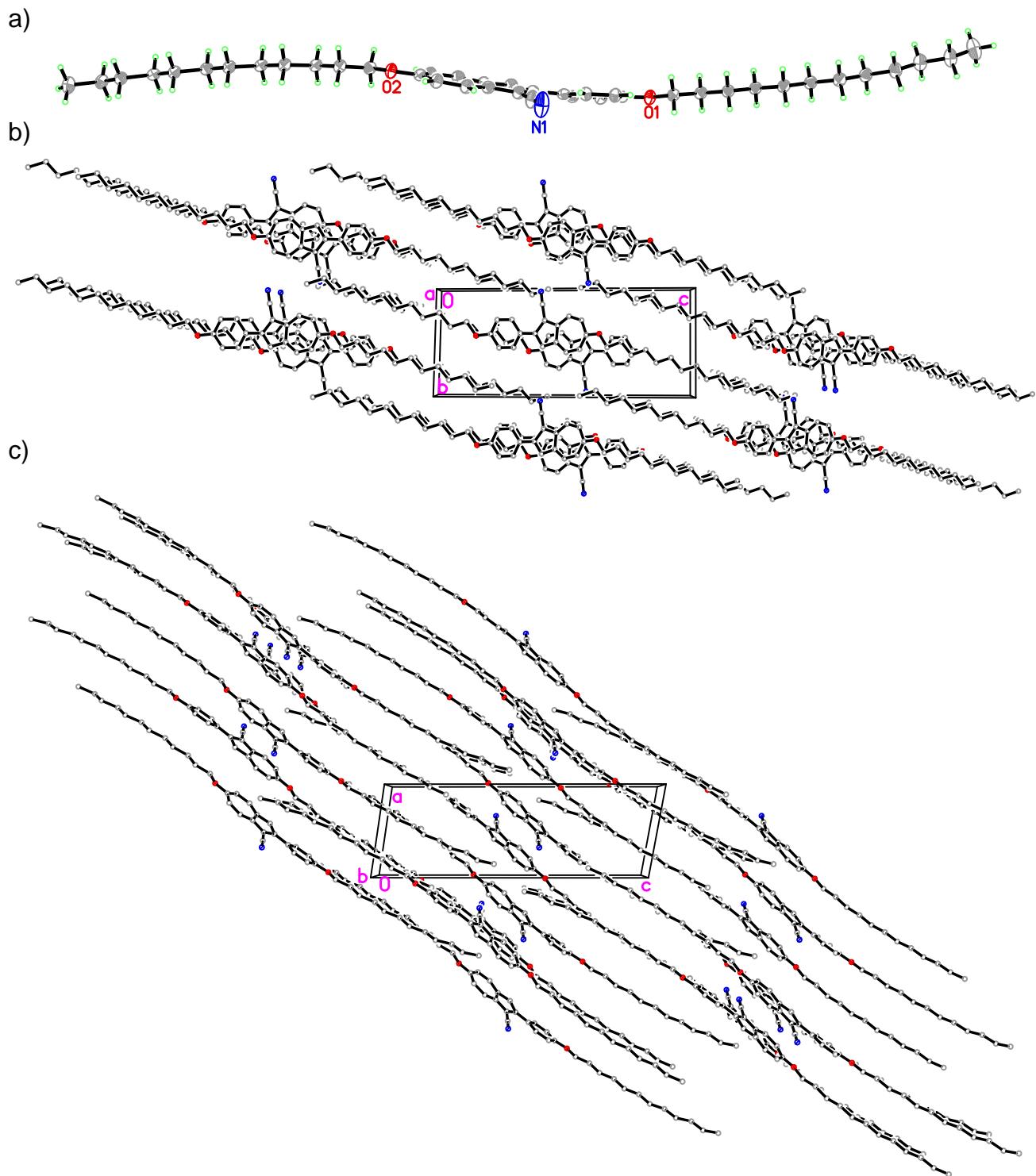
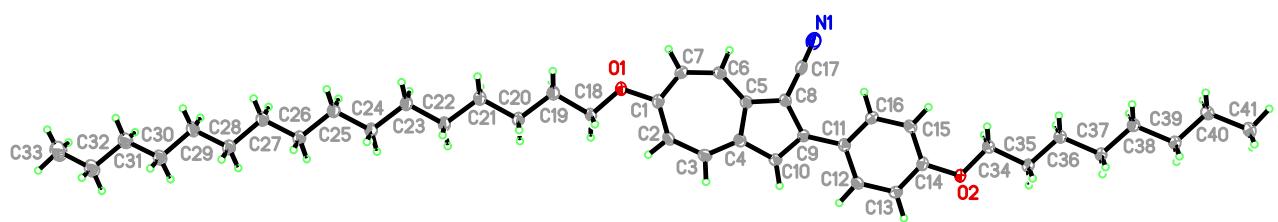



Figure S12: Single crystal X-Ray structure of **12O-AzCN-PhO12**. a) single molecule, b) point of view along the a-axis, and c) along the b-axis.

a)

b)

c)

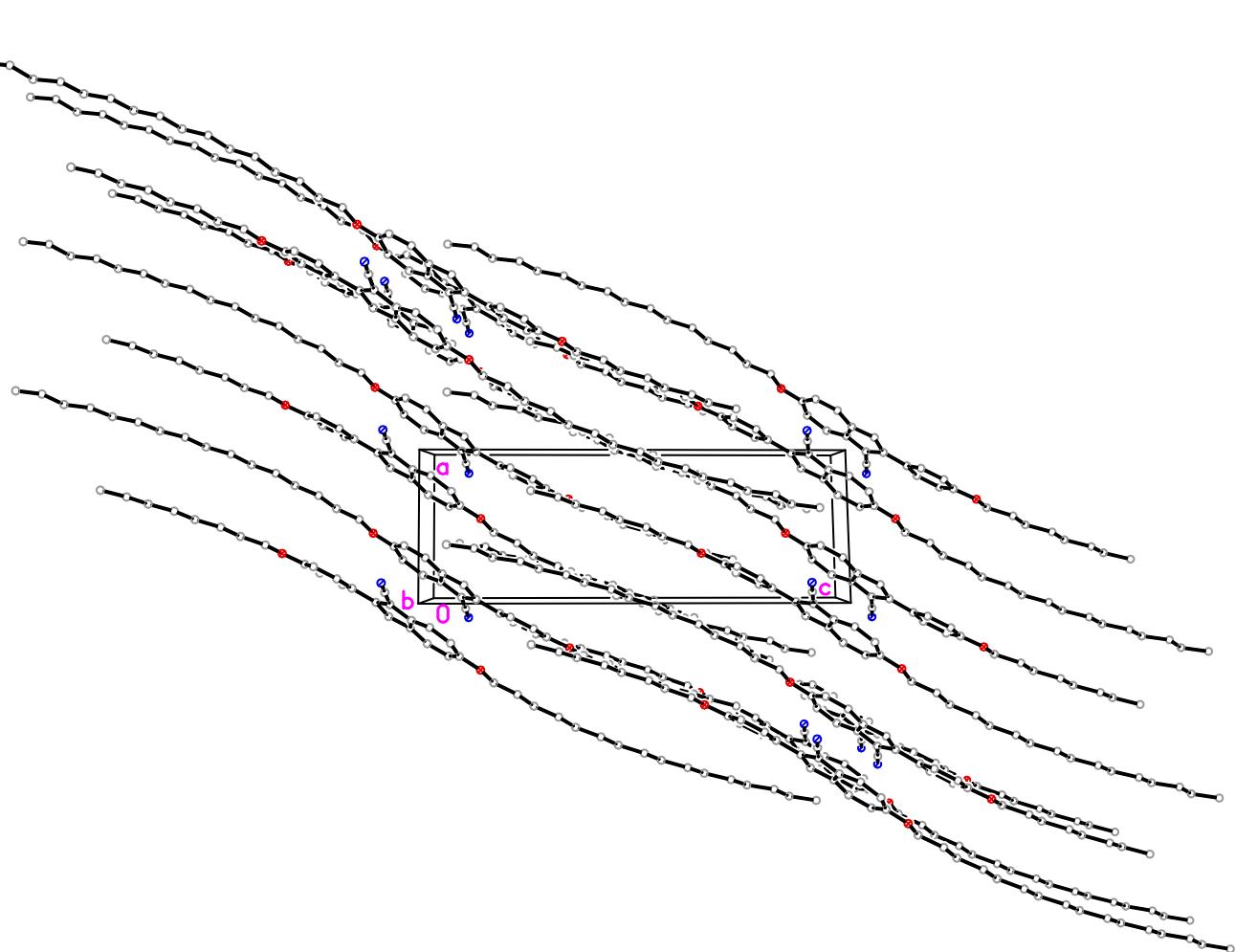


Figure S13: Single crystal X-Ray structure of **16O-AzCN-PhO8**. a) single molecule, b) point of view along the a-axis and c) along the b-axis.

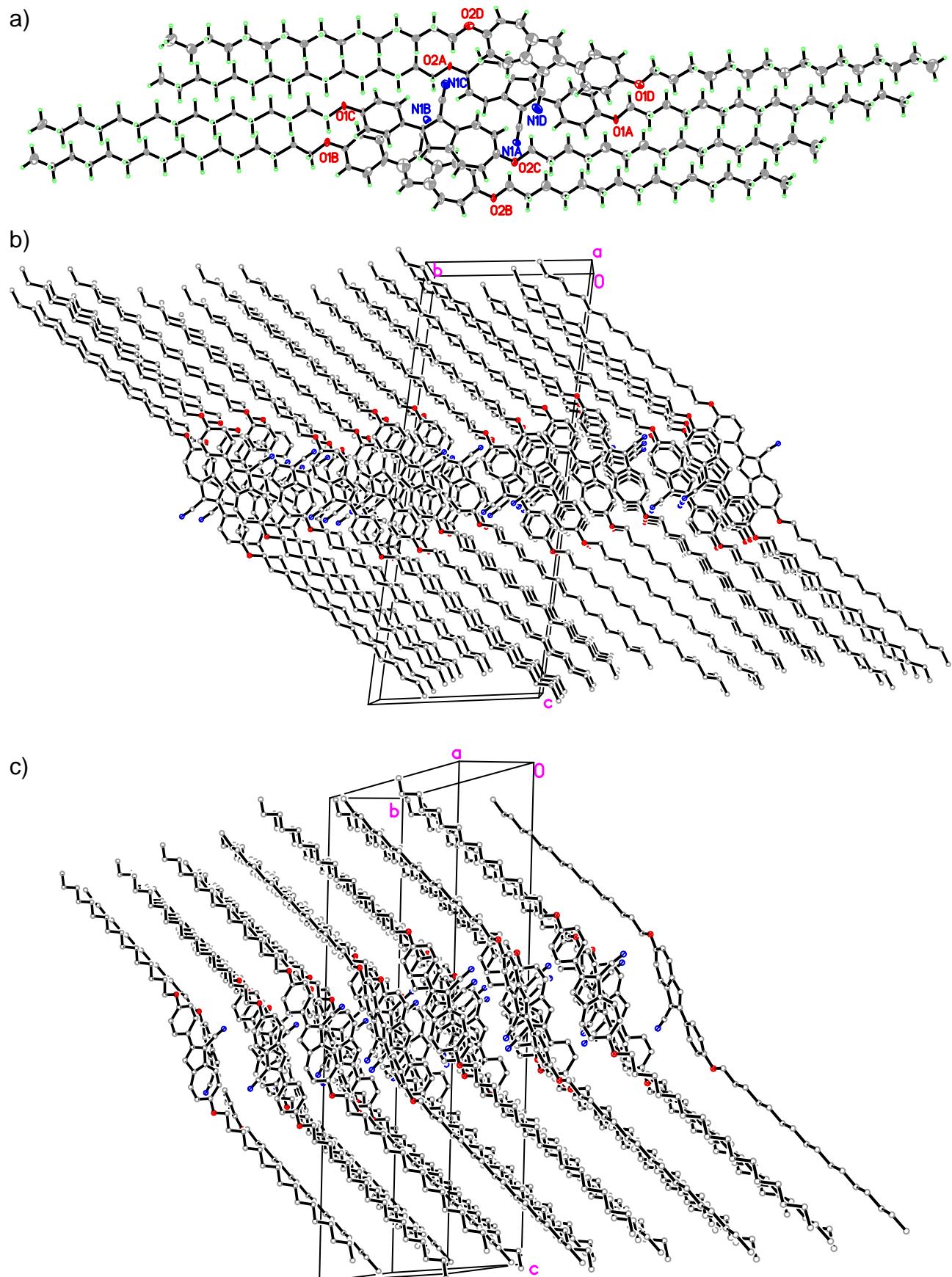


Figure S14: Single crystal X-Ray structure of **16O-AzCN-PhO16**. a) All four independent molecules of the unit cell, b) point of view along the a-axis, parallel to the ab-plane.

7. Literature

- 1 F. Schulz, P. Ehni, B. Wank, A. Bauer, W. Frey and S. Laschat, *Liq. Cryst.*, 2021, **48**, 832–843.
- 2 S. Ushijima and H. Togo, *Synlett*, 2010, **2010**, 1067–1070.

8. NMR-spectra

Mar12-2020.20.fid
2 Schulz FIN-297

Figure S15: ^1H NMR spectrum of compound **8O-AzCN-Br**

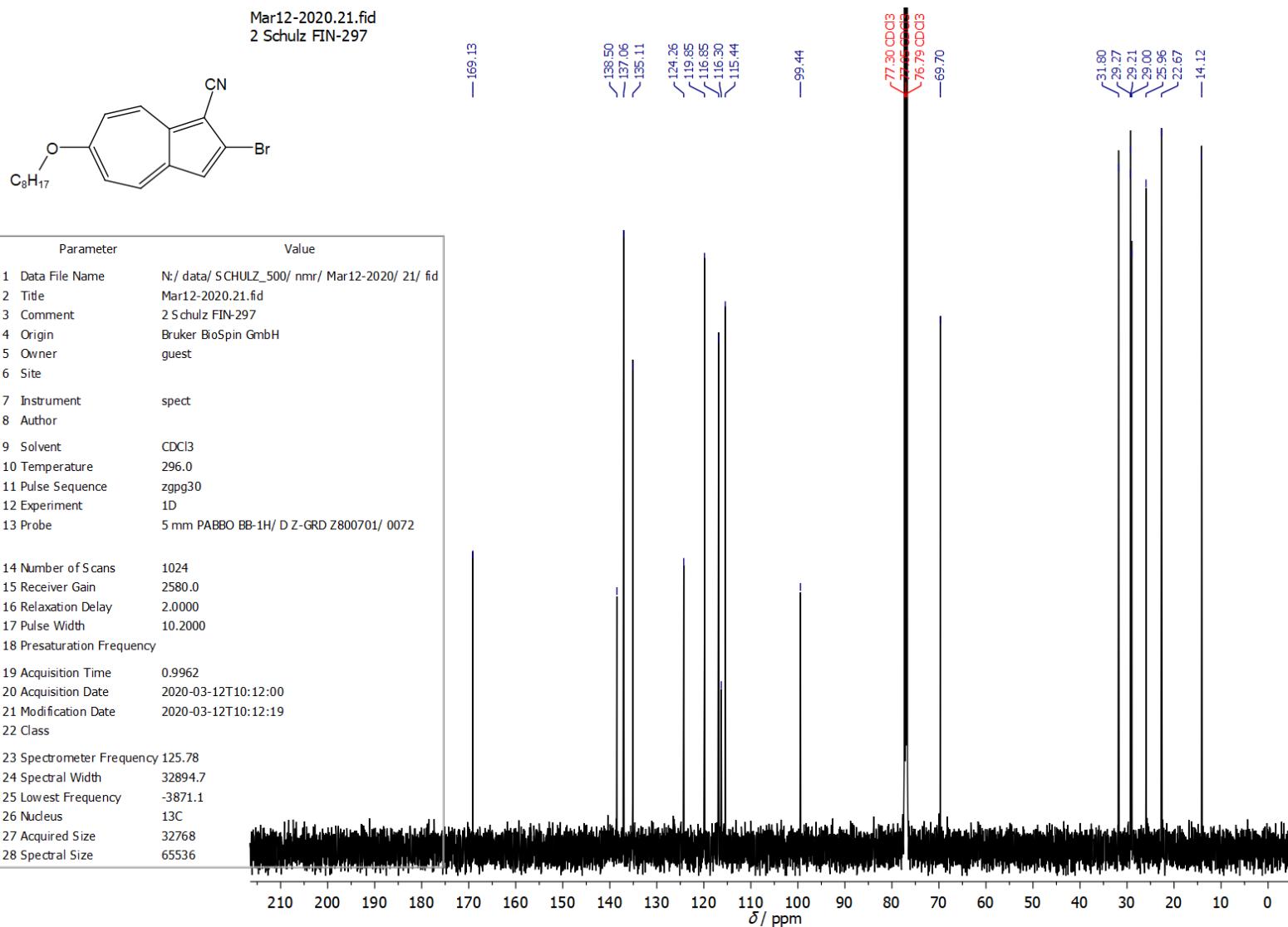


Figure S16: ¹³C NMR spectrum of compound **8O-AzCN-Br**

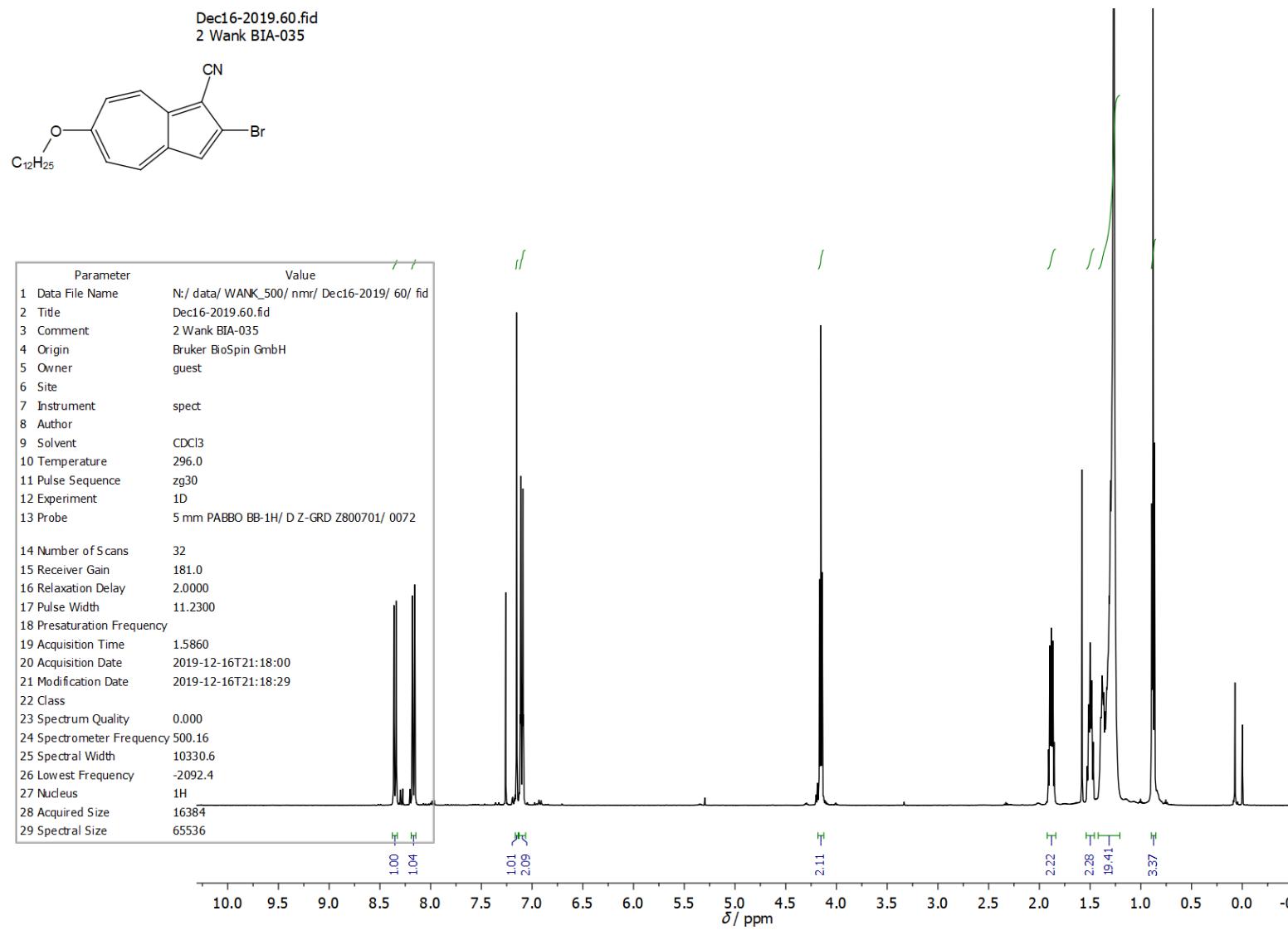


Figure S17: ¹H NMR spectrum of compound **12O-AzCN-Br**

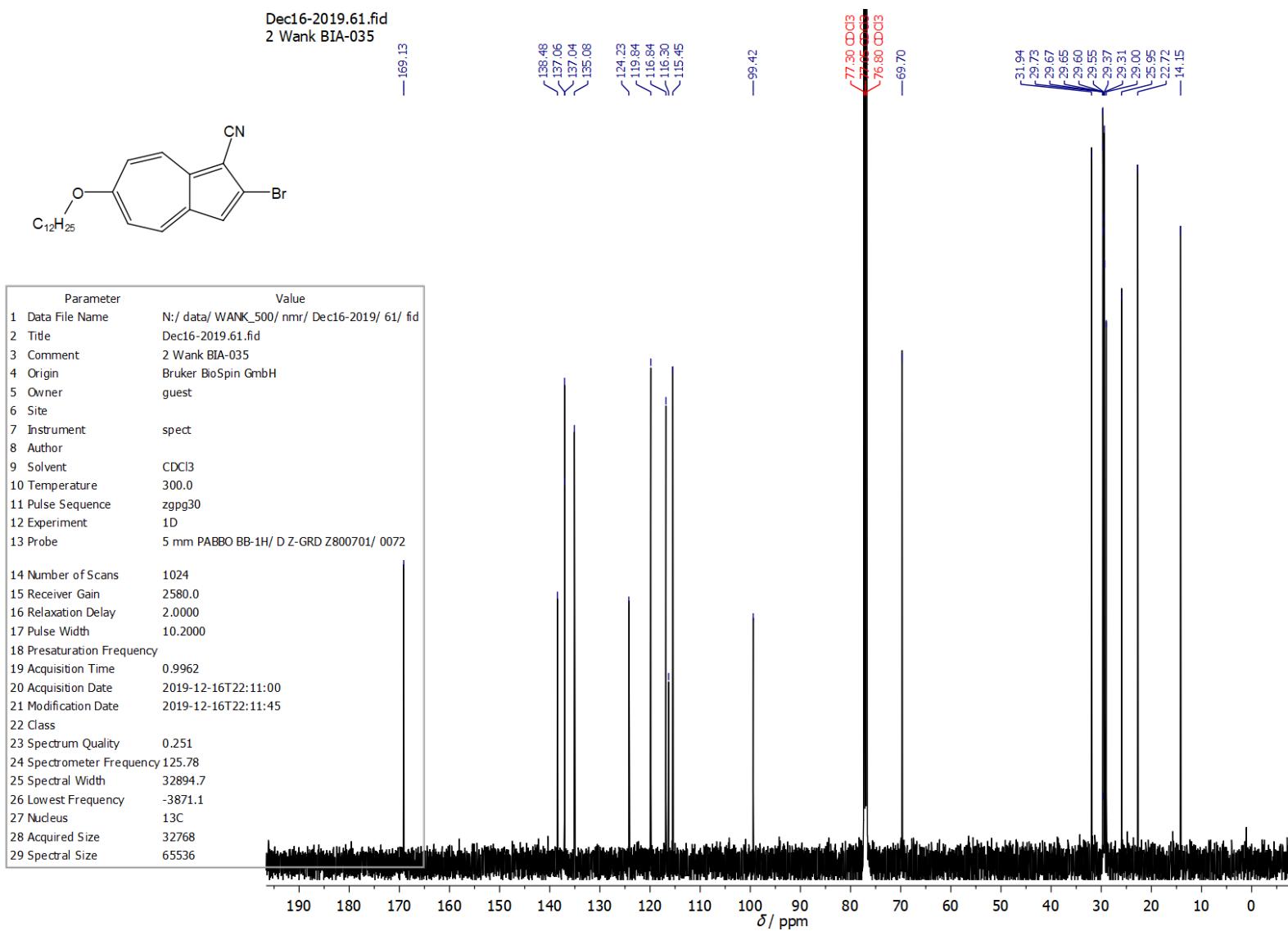
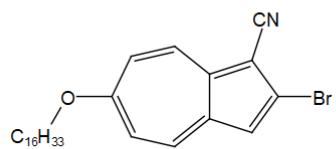



Figure S18: ¹³CNMR spectrum of compound **12O-AzCN-Br**

Mar19-2020.30.fid
02 Schulz FIN-300-2

Parameter	Value
1 Data File Name	N:/ data/ SCHULZ_700/ nmr/ Mar19-2020/ 30/ fid
2 Title	Mar19-2020.30.fid
3 Comment	02 Schulz FIN-300-2
4 Origin	Bruker BioSpin GmbH
5 Owner	guest
6 Site	
7 Instrument	spect
8 Author	
9 Solvent	CDCl_3
10 Temperature	298.0
11 Pulse Sequence	zg
12 Experiment	1D
13 Probe	5 mm CPQCI 1H-31P/ 13C/ 15N/ D Z-GRD Z114851/ 0007
14 Number of Scans	16
15 Receiver Gain	9.1
16 Relaxation Delay	2.0000
17 Pulse Width	8.1500
18 Presaturation Frequency	
19 Acquisition Time	3.1195
20 Acquisition Date	2020-03-19T12:15:00
21 Modification Date	2020-03-19T12:15:12
22 Class	
23 Spectrometer Frequency	700.36
24 Spectral Width	10504.2
25 Lowest Frequency	-1976.9
26 Nucleus	^1H
27 Acquired Size	32768
28 Spectral Size	65536

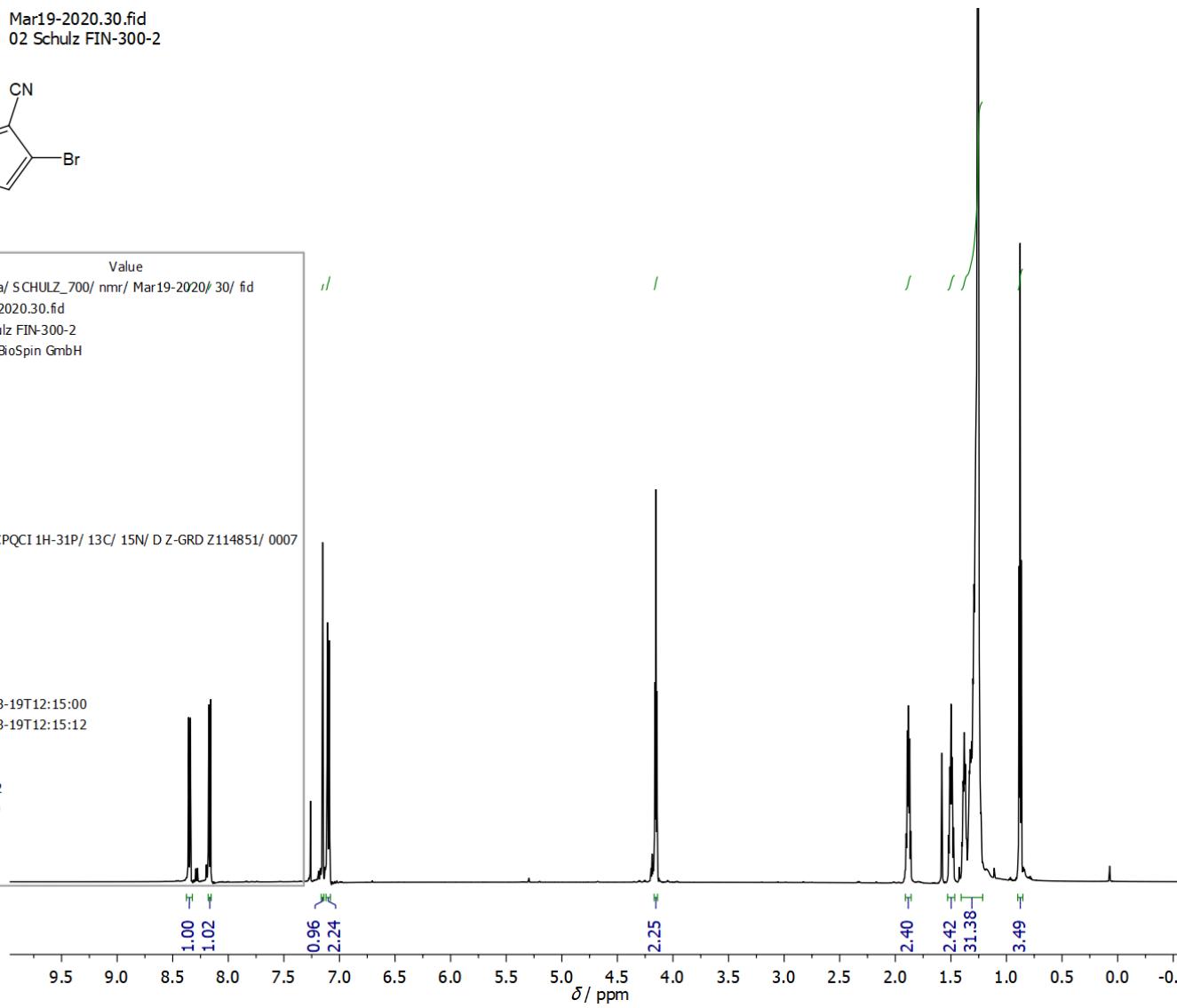


Figure S19: ^1H NMR spectrum of compound **16O-AzCN-Br**

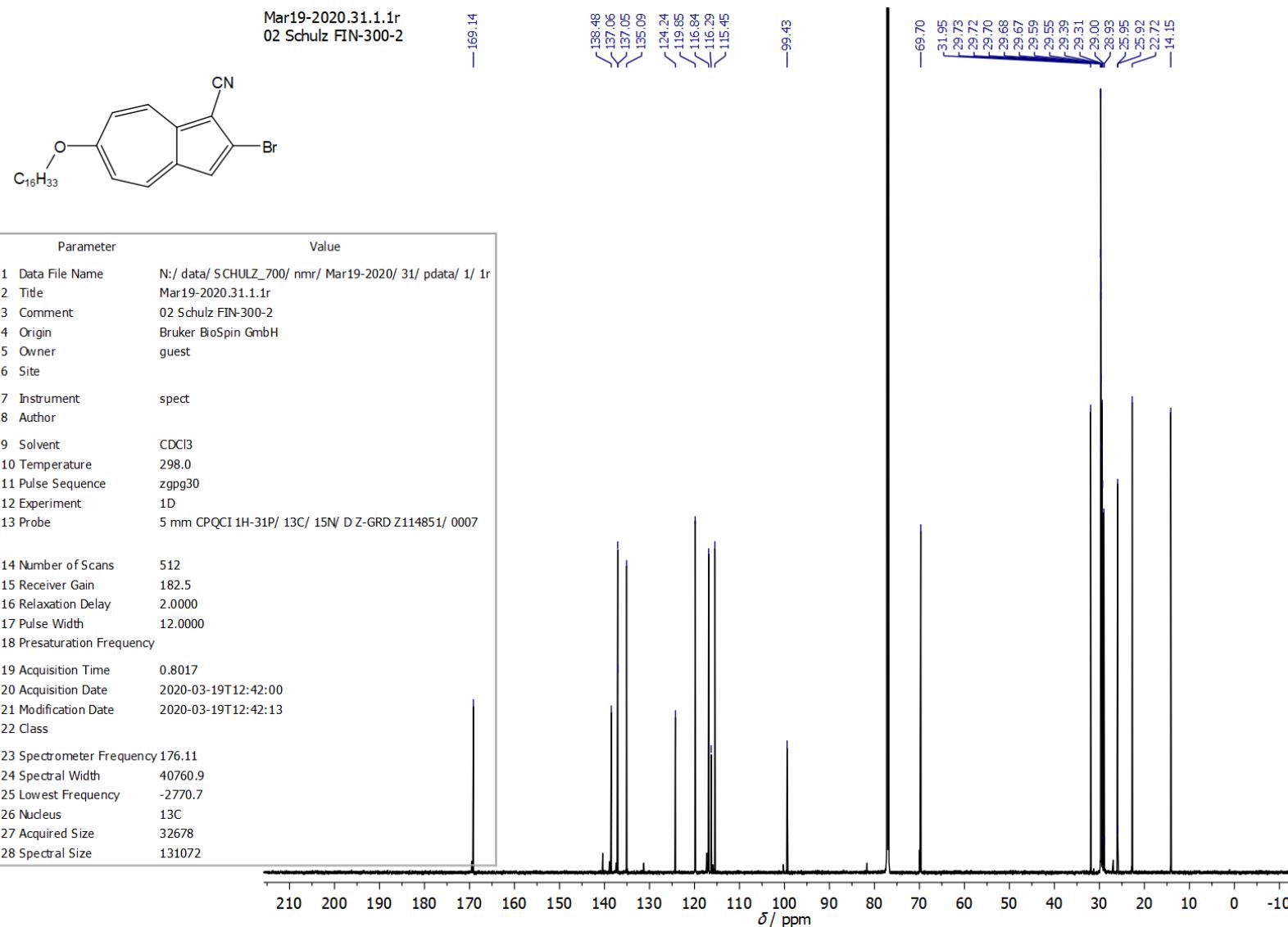


Figure S20: ^{13}C NMR spectrum of compound **16O-AzCN-Br**

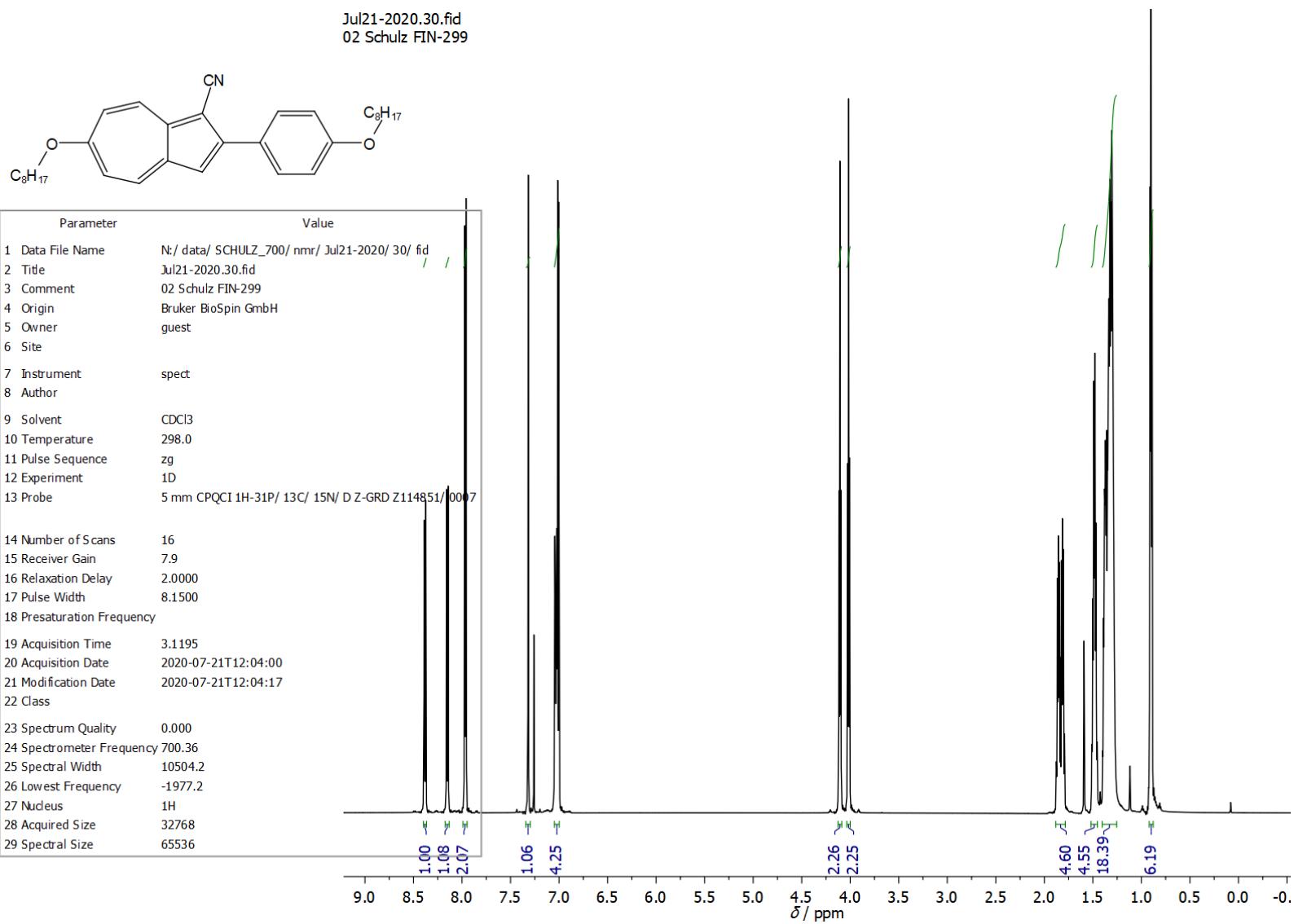


Figure S21: ¹H NMR spectrum of compound **8O-AzCN-PhO8**

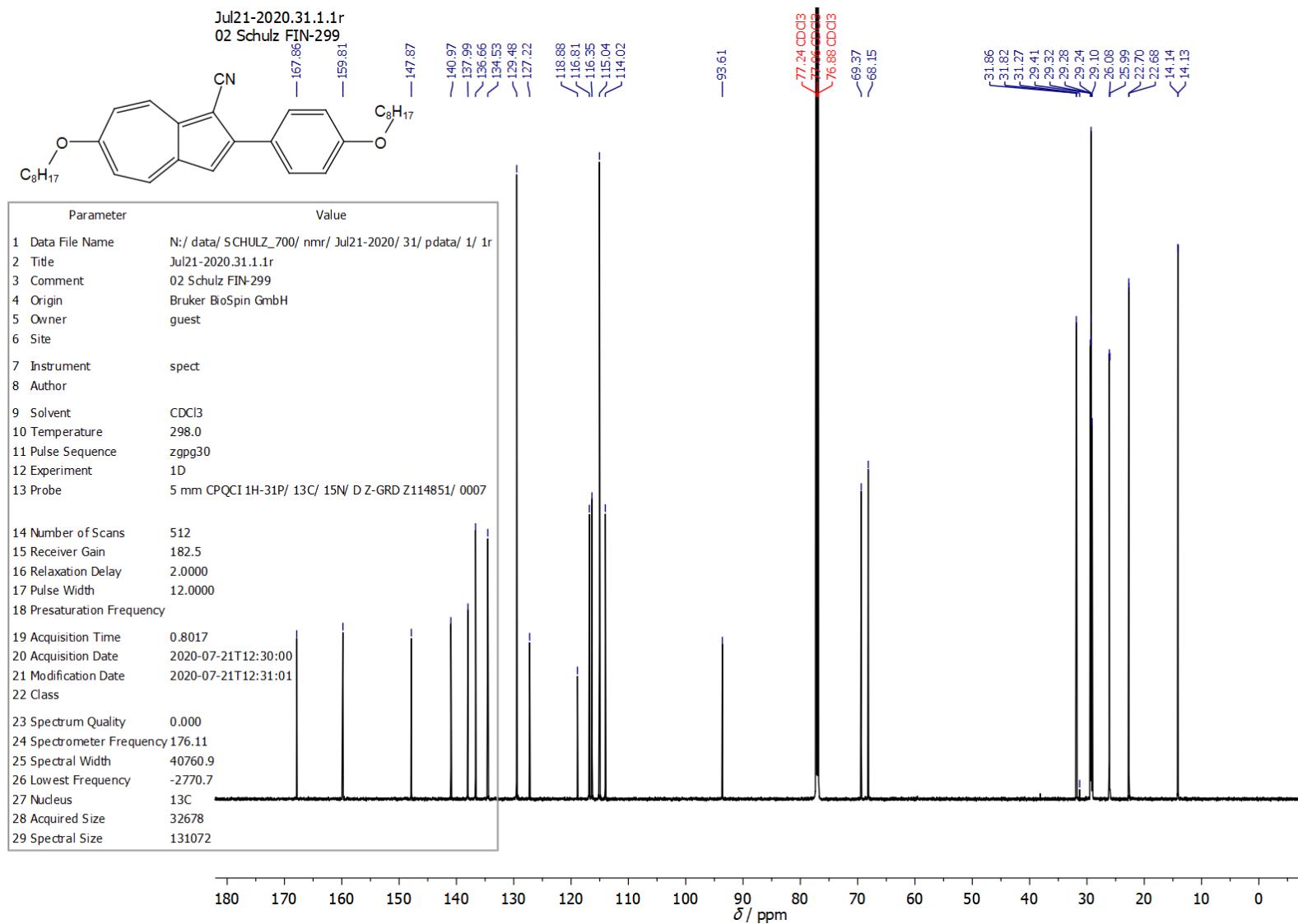


Figure S22: ¹³C NMR spectrum of compound **8O-AzCN-PhO8**

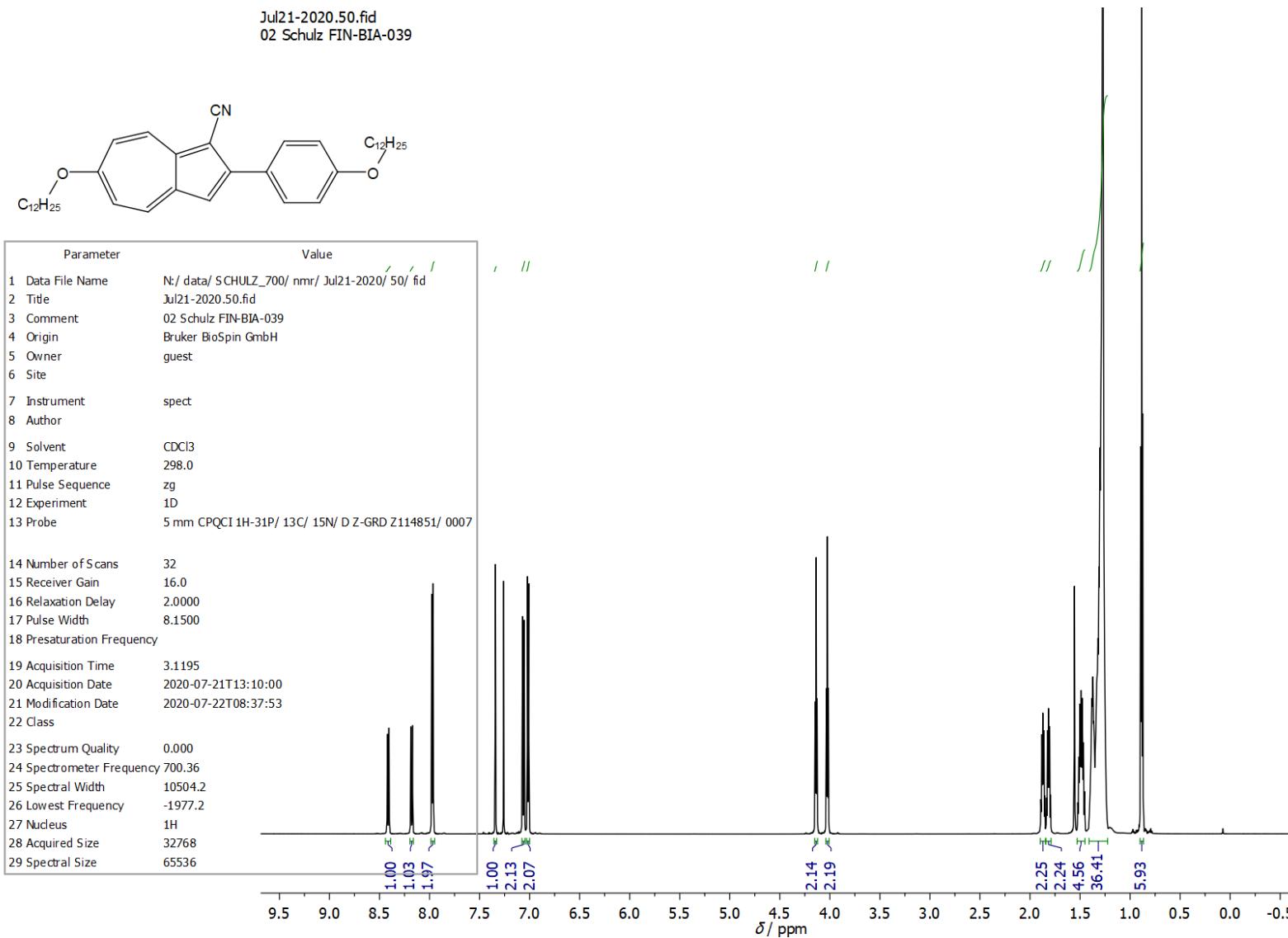


Figure S23: ^1H NMR spectrum of compound **12O-AzCN-PhO12**

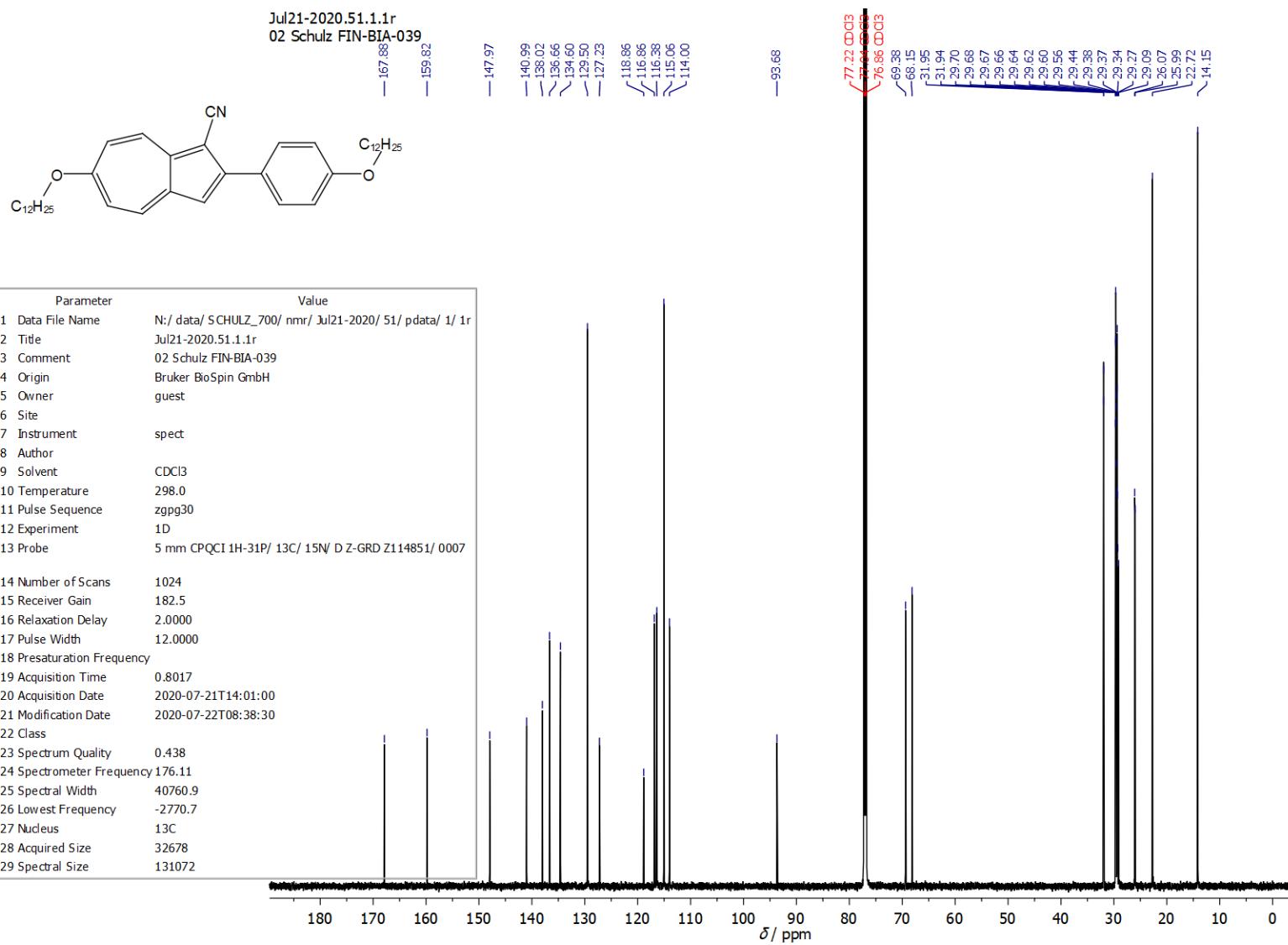
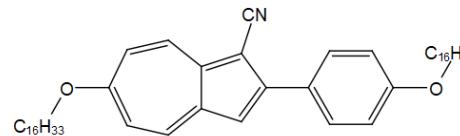



Figure S24: ¹³C NMR spectrum of compound **12O-AzCN-PhO12**

Dec01-2020.20.fid
02 Wank BIA-CN2K-5-RK

Parameter	Value
1 Data File Name	N:/data/ WANK_700/ nmr/ Dec01-2020/ 20/ fid
2 Title	Dec01-2020.20.fid
3 Comment	02 Wank BIA-CN2K-5-RK
4 Origin	Bruker BioSpin GmbH
5 Owner	guest
6 Site	
7 Instrument	spect
8 Author	
9 Solvent	CDCl ₃
10 Temperature	298.0
11 Pulse Sequence	zg
12 Experiment	1D
13 Probe	5 mm CPQCI 1H-31P/ 13C/ 15N/ D Z-GRD Z114851/ 0007
14 Number of Scans	64
15 Receiver Gain	20.5
16 Relaxation Delay	2.0000
17 Pulse Width	8.1500
18 Presaturation Frequency	
19 Acquisition Time	3.1195
20 Acquisition Date	2020-12-01T10:54:00
21 Modification Date	2020-12-01T10:54:22
22 Class	
23 Spectrum Quality	0.000
24 Spectrometer Frequency	700.36
25 Spectral Width	10504.2
26 Lowest Frequency	-1977.9
27 Nucleus	1H
28 Acquired Size	32768
29 Spectral Size	65536

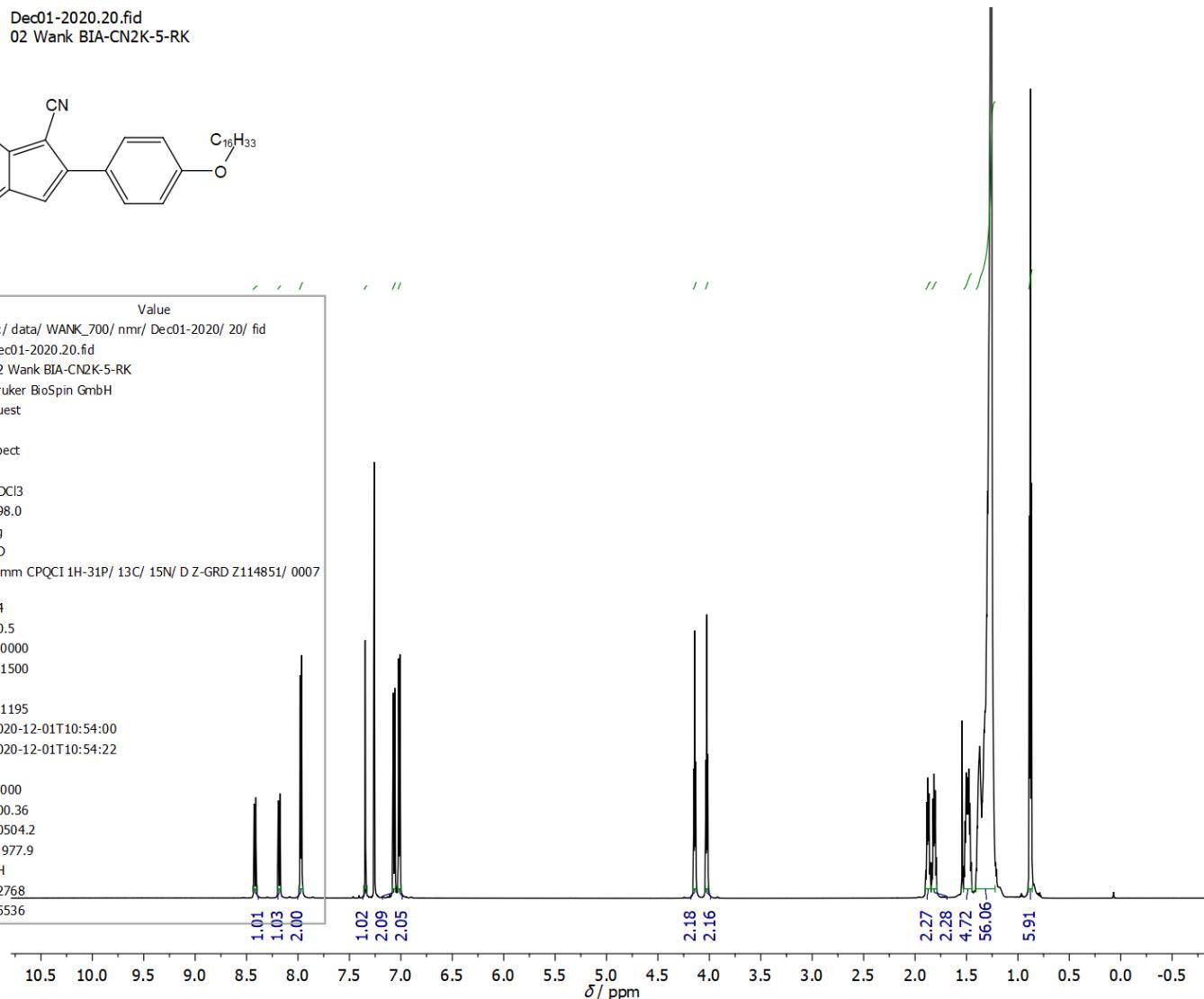


Figure S25: ¹H NMR spectrum of compound **16O-AzCN-PhO16**

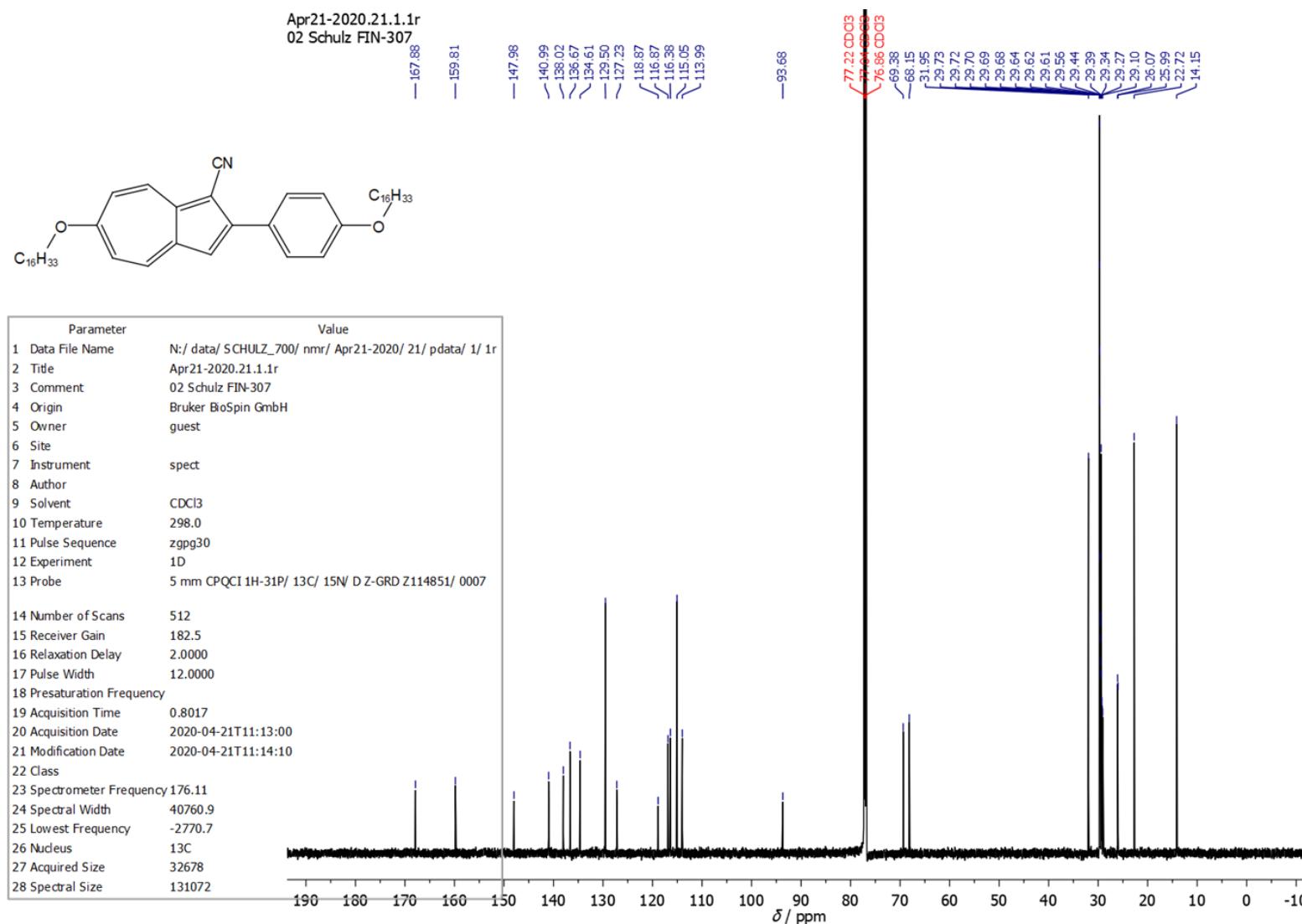
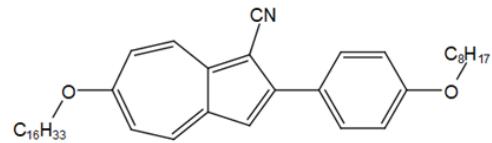



Figure S26: ^{13}C NMR spectrum of compound 16O-AzCN-PhO16

Jul21-2020.40.fid
02 Schulz FIN-331

Parameter	Value
1 Data File Name	N:/ data/ SCHULZ_700/ nmr/ Jul21-2020/ 40/ fid
2 Title	Jul21-2020.40.fid
3 Comment	02 Schulz FIN-331
4 Origin	Bruker BioSpin GmbH
5 Owner	guest
6 Site	
7 Instrument	spect
8 Author	
9 Solvent	CDCl3
10 Temperature	298.0
11 Pulse Sequence	zg
12 Experiment	1D
13 Probe	5 mm CPQCI 1H-31P/ 13C/ 15N/ D Z-GRD Z114851/ 0007
14 Number of Scans	16
15 Receiver Gain	9.9
16 Relaxation Delay	2.0000
17 Pulse Width	8.1500
18 Presaturation Frequency	
19 Acquisition Time	3.1195
20 Acquisition Date	2020-07-21T12:36:00
21 Modification Date	2020-07-21T12:36:53
22 Class	
23 Spectrometer Frequency	700.36
24 Spectral Width	10504.2
25 Lowest Frequency	-1976.5
26 Nucleus	1H
27 Acquired Size	32768
28 Spectral Size	65536

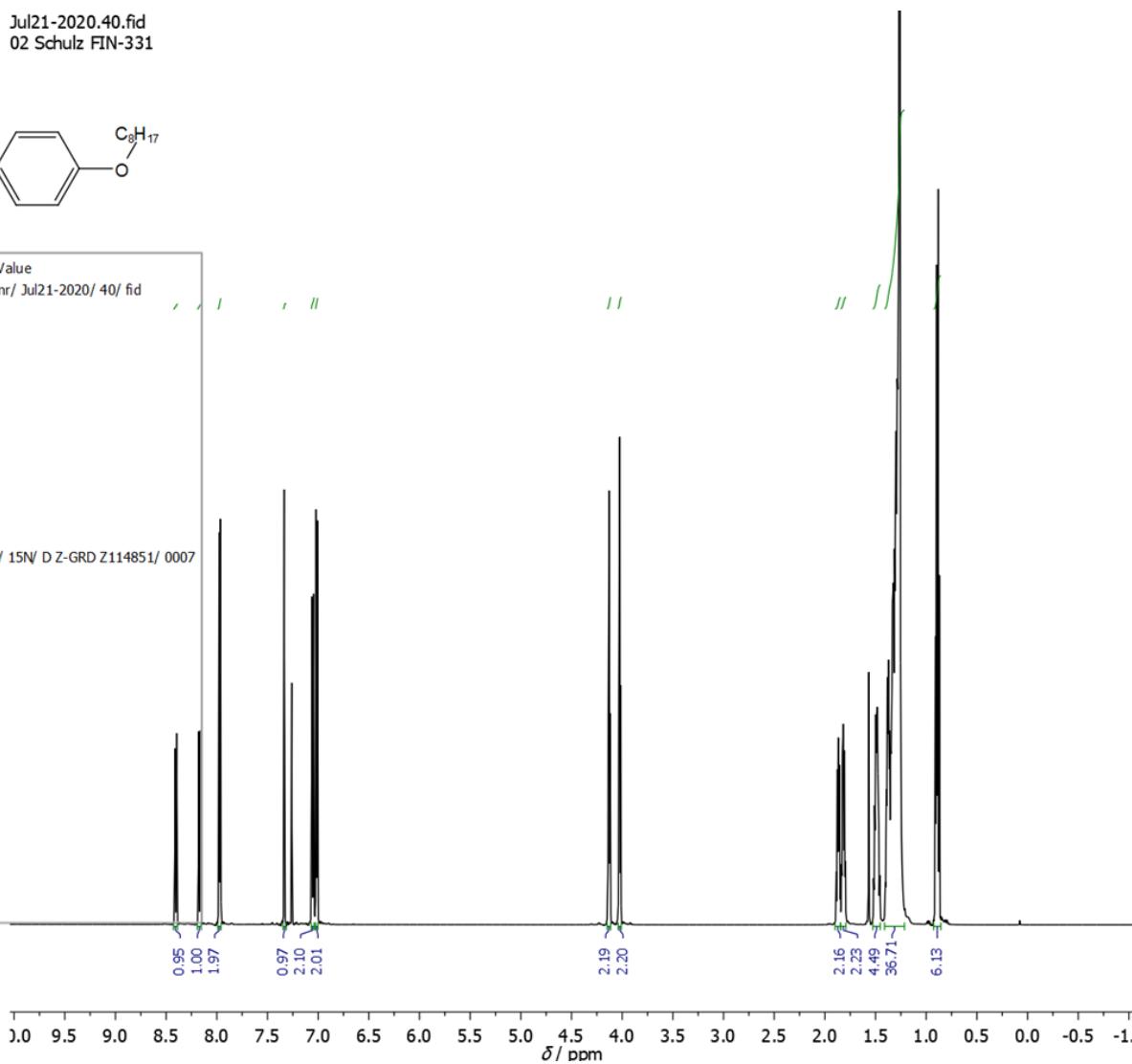


Figure S27: ^1H NMR spectrum of compound **16O-AzCN-PhO8**

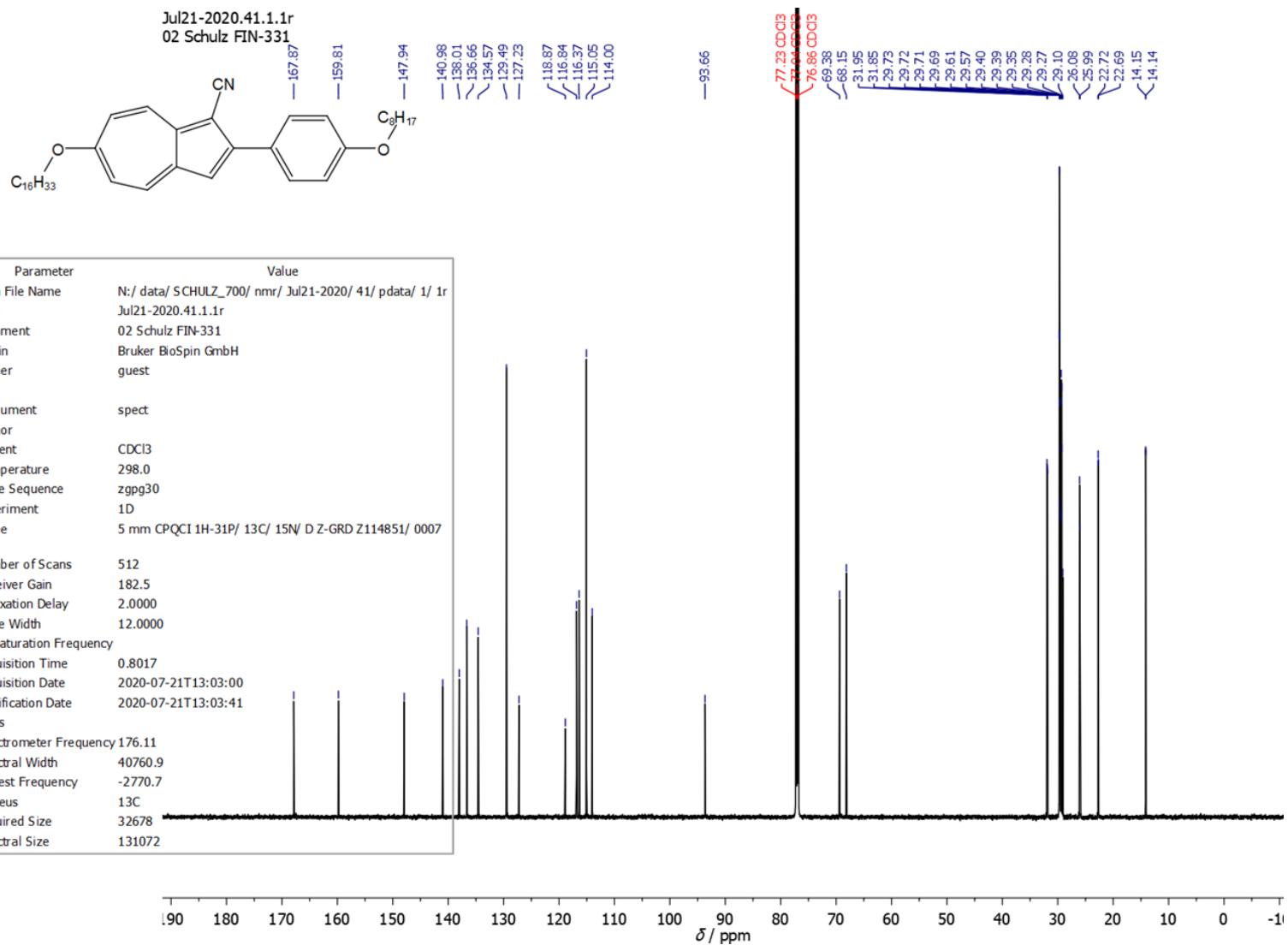
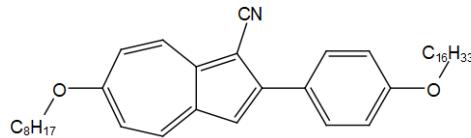



Figure S28: ¹³C NMR spectrum of compound 16O-AzCN-PhO8

Aug27-2020.30.fid
2 Schulz FIN-352

Parameter	Value
1 Data File Name	N:/ data/ SCHULZ_500/ nmr/ Aug27-2020/ 30/ fid
2 Title	Aug27-2020.30.fid
3 Comment	2 Schulz FIN-352
4 Origin	Bruker BioSpin GmbH
5 Owner	guest
6 Site	
7 Instrument	spect
8 Author	
9 Solvent	CDCl ₃
10 Temperature	296.0
11 Pulse Sequence	zg30
12 Experiment	1D
13 Probe	5 mm PABBO BB-1H/ D Z-GRD Z800701/ 0072
14 Number of Scans	32
15 Receiver Gain	181.0
16 Relaxation Delay	2.0000
17 Pulse Width	11.2300
18 Presaturation Frequency	
19 Acquisition Time	1.5860
20 Acquisition Date	2020-08-27T12:54:00
21 Modification Date	2020-08-27T12:54:22
22 Class	
23 Spectrometer Frequency	500.16
24 Spectral Width	10330.6
25 Lowest Frequency	-2092.6
26 Nucleus	1H
27 Acquired Size	16384
28 Spectral Size	65536

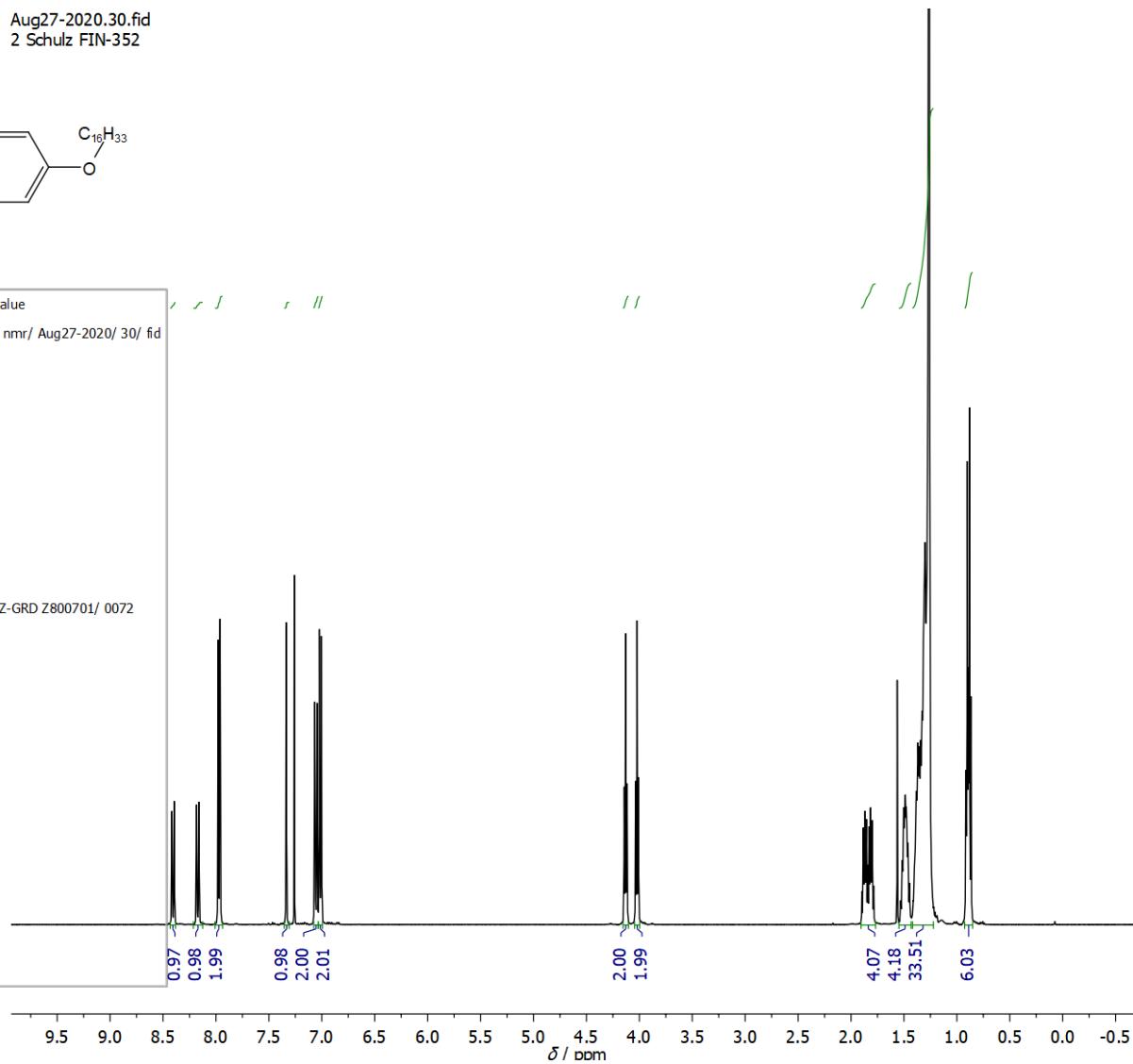


Figure S29: ¹H NMR spectrum of compound 8O-AzCN-PhO16

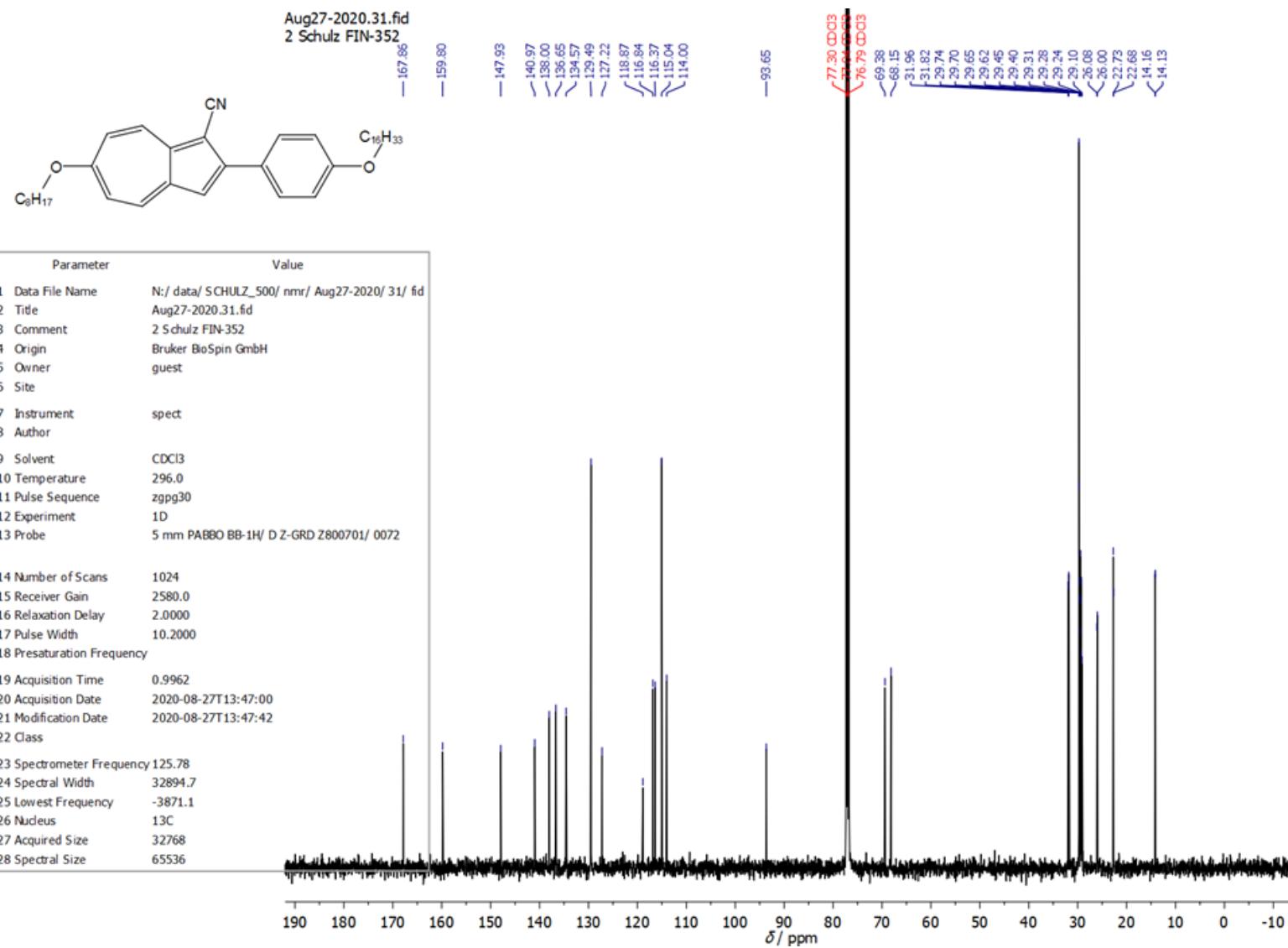


Figure S30: ^{13}C NMR spectrum of compound **8O-AzCN-PhO16**