Effective Regulation on Catalytic Performance of Nickel-Iron-Vanadium Layered Double Hydroxide for Urea Oxidation via Sulfur Incorporation

Kai Peng^a, Liyan Liu^a, Narayanamoorthy Bhuvanendran^b, Fen Qiao^c, Guangping Lei^d, Sae Youn Lee^b, Qian Xu^a Huaneng Su^a,*

^a Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China. ^b Department of Energy & Materials Engineering, Dongguk University, Seoul 04620, Republic of Korea.

^c School of Energy & Power Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.

^d School of Energy and Power Engineering, North University of China, 3 Xueyuan Road, Taiyuan 030051, Shanxi, P. R. China

*Corresponding author.

E-mail address: suhuaneng@ujs.edu.cn

Fig. S1. SEM image and corresponding EDS mapping results of the S-NiFeV LDH catalysts.

Fig. S2. SEM image and corresponding EDS mapping results of the NiFeV LDH catalysts.

Fig. S3. CV curves record in 1 M KOH with scan rates from 20 to 100 mV·s⁻¹ for (a) S-

NiFeV LDH, (b) NiFeV LDH, (c) NiFe LDH, (d) RuO₂, and (e) bare NF.

Fig. S4. Polarization curves of different electrode normalized ECSAs.

Fig. S5. The polarization curves of the S-NiFeV LDH sample before and after stability measurement.

Fig. S6. XPS spectra of (a) Ni 2p, (b) S 2p and (c) O 1s in the S-NiFeV LDH after stability test. (d) SEM image of S-NiFeV LDH after stability test.

Fig. S7. Density of states (DOS) of the NiFeV LDH sample.

Table S1. Comparison of UOR performance for the S-NiFeV LDH and other previously
reported catalysts.

Catalysts	Electrolyte	Current density	Potential	Tafel	Ref.
		(mA·cm ⁻²)	(mV vs. RHE)	(mV/dec)	
O-NiMoP/NF	1 M KOH and 0.5 M urea	100	1.41	34	1
Ni ₃ N/NF	1 M KOH and 0.5 M urea	100	1.42	41	2
Ni-DMAP-2/NF	1 M KOH and 0.5 M urea	100	1.45	23	3
Co-doped NiMoO ₄	1 M KOH and 0.5 M urea	100	1.38	38.5	4
O _{vac} -V-Ni(OH) ₂	1 M KOH and 0.33 M urea	100	1.47	29.12	5
NiCoP	1 M KOH and 0.5 M urea	100	1.42	59	6
Ni–Mo–P/CP	1 M KOH and 0.33 M urea	100	1.39	27	7
P-NiFeO _x H _y	1 M KOH and 0.33 M urea	10	1.37	72.6	8
Ce-Co ₃ O ₄	1 M KOH and 0.5 M urea	50	1.39	30.5	9
WO ₃ /NF-0.25	1 M KOH and 0.33 M urea	100	1.384	-	10
P–NiCoZn LDH/NF-10%	1 M KOH and 0.5 M urea	100	1.421	70	11

Ni ₂ P	1 M KOH and 0.5 M urea	50	1.34	46.3	12
SS-NiCo-0.5	1 M KOH and 0.33 M	100	1.34	48.2	13
	urea				
S-NiFeV LDH	1 M KOH and 0.33 M	100	1.38	30.1	This
	urea				work

Reference

- H. Jiang, M. Sun, S. Wu, B. Huang, C.-S. Lee and W. Zhang, *Advanced Functional Materials*, 2021, **31**, 2104951.
- S. Hu, C. Feng, S. Wang, J. Liu, H. Wu, L. Zhang and J. Zhang, ACS Applied Materials & Interfaces, 2019, 11, 13168-13175.
- 3. H. Jiang, S. Bu, Q. Gao, J. Long, P. Wang, C.-S. Lee and W. Zhang, *Materials Today Energy*, 2022, **27**, 101024.
- 4. X. Liu, H. Qin, G. Wang, Q. Li, Q. Huang, Z. Wen and S. Mao, *Journal of Materials Chemistry A*, 2022, **10**, 16825-16833.
- H. Qin, Y. Ye, J. Li, W. Jia, S. Zheng, X. Cao, G. Lin and L. Jiao, *Advanced Functional Materials*, 2022, n/a, 2209698.
- 6. X. Ding, L. Pei, Y. Huang, D. Chen and Z. Xie, *Small*, 2022, **n**/**a**, 2205547.
- J. Li, F. Hu, J. Hei, G. Liu, H. Wei, N. Wang and H. Wei, *Dalton Transactions*, 2022, DOI: 10.1039/D2DT02983A.
- 8. Q. Li, Q. Chen, S. Lei, M. Zhai, G. Lv, M. Cheng, L. Xu, H. Xu, Y. Deng and J. Bao, Journal of Colloid and Interface Science, 2023, 631, 56-65.

- H. Wang, X. Du, X. Zhang and L. Li, *Journal of Colloid and Interface Science*, 2023,
 630, 512-524.
- W. Xu, L. Zhu, Z. Sun, H. Xue, L. Guo, Y. Feng, C. Li, H. Li, Y. Wang, Q. Liang and H.-b. Sun, *ChemSusChem*, 2022, n/a, e202201584.
- Z. Yang, Y. Zhang, C. Feng, H. Wu, Y. Ding and H. Mei, *International Journal of Hydrogen Energy*, 2021, 46, 25321-25331.
- J. Kang, C. Sheng, J. Wang, H. Xu, B. Zhao, S. Chen, Y. Qing and Y. Wu, *International Journal of Hydrogen Energy*, 2022, DOI: <u>https://doi.org/10.1016/j.ijhydene.2022.11.210</u>.
- Z. Zhang, J. Yang, J. Liu, Z.-G. Gu and X. Yan, *Electrochimica Acta*, 2022, 426, 140792.