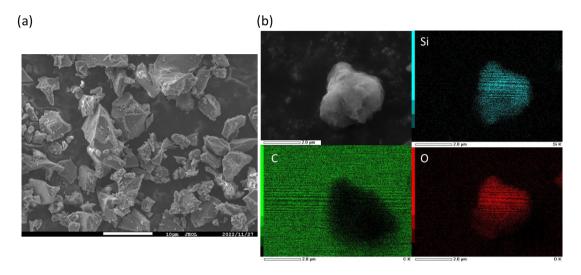
Supporting Information

High-Performance SiO Electrode for Lithium-ion Batteries:

Merged Effect of New Polyacrylate Binder and Electrode
Maturation Process

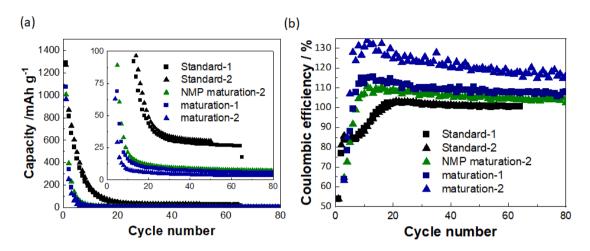
Shogo Yamazaki,[†] Ryoichi Tatara, [†] Hironori Mizuta, [‡] Kei Kawano, [‡] Satoshi Yasuno, [¶] and Shinichi Komaba ^{†*}

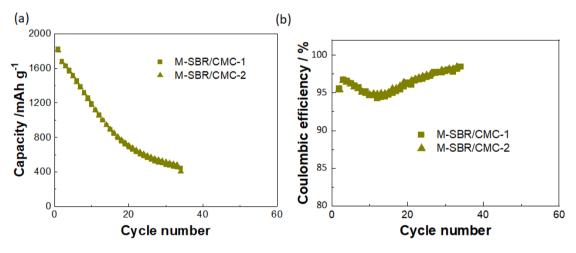

[†] Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

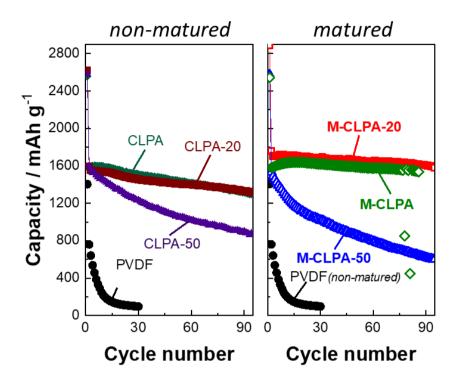
J , J

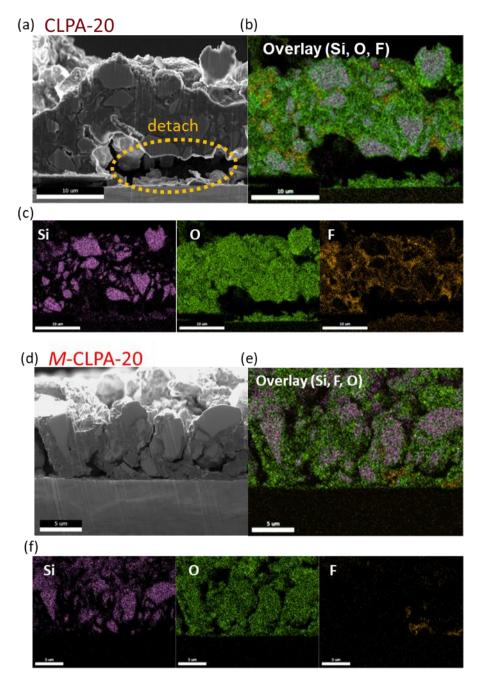
[‡]FUJIFILM Wako Pure Chemical Co. Ltd., 1633 Oazamatoba, Kawagoe-shi, Saitama 350-1101, Japan

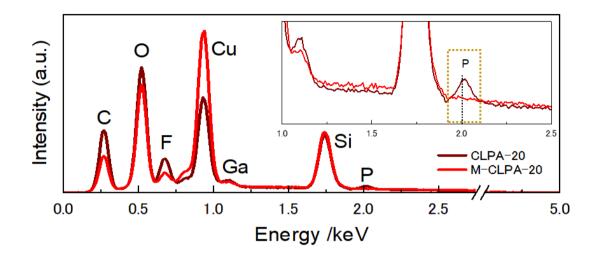
¶ Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-gun, Hyogo, 679-5198, Japan

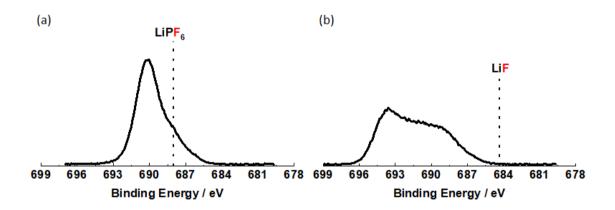

*Correspondence to: komaba@rs.tus.ac.jp

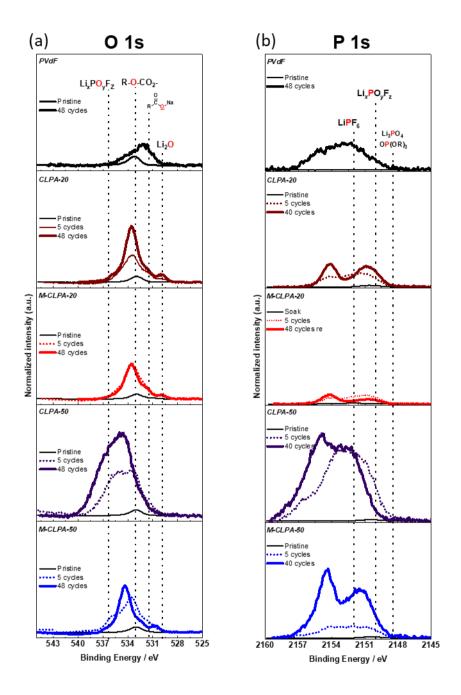

Figure S1. (a) SEM image of SiO@C particles and (b) corresponding EDS elemental mappings of Si, C, and O.

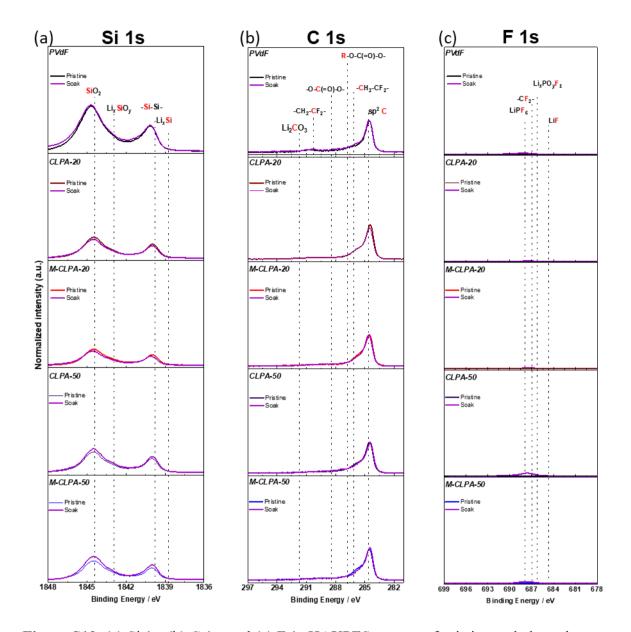

Figure S2. Viscosity flow curve of 10 wt % solution of CLPA, CLPA-20, and CLPA-50 binder.

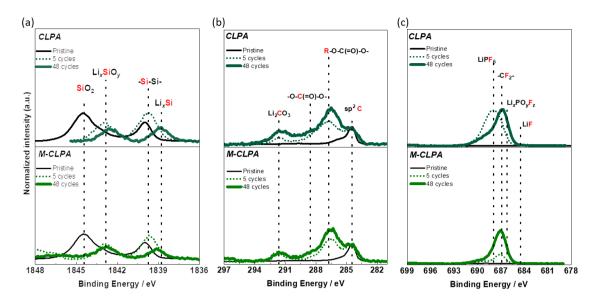

Figure S3. Cycling performance: (a) discharge capacity and (b) Coulombic efficiency of SiO@C/Li half-cells fabricated using SiO@C composite electrode with PVDF binder. The electrodes were matured for three days at 90% RH or saturated NMP-vapor.

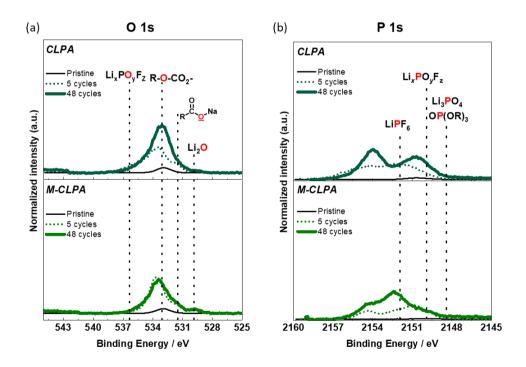

Figure S4. Cycling performance: (a) discharge capacity and (b) Coulombic efficiency of SiO@C/Li half-cells fabricated using SiO@C composite electrode with SBR/CMC binder. The electrodes were matured for three days at 90% RH.


Figure S5. Cycling performance: variations in charge capacity of matured and non-matured SiO@C composite electrodes with PVDF and CLPA-based binders in Li half-cells.


Figure S6. Cross-sectional SEM images of (a) non-matured SiO@C composite electrode with CLPA-20 and (b) corresponding EDS elemental mapping overlaid with of Si, Na, and O, and (c) elemental maps of Si, O, Na, and C, and (d) SiO@C composite electrodes with M-CLPA-20 after cycling and (e) corresponding EDS elemental mapping overlaid with of Si, Na, and O, and (f) elemental maps of Si, O, Na, and C.


Figure S7. SEM-EDS profiles of non-matured and matured SiO@C composite electrodes with CLPA-20.


Figure S8. HAXPES spectra of F 1s: (a) LiF and (b) LiPF₆. The samples composed of LiF or LiPF₆: AB: PVA = 80: 10: 0.5 (weight ratio) were prepared in an Ar atmosphere.


Figure S9. (a) O 1s and (b) P 1s HAXPES spectra of the non-matured and matured SiO@C composite electrodes with different binders before cycling, after 5 cycles, and after 48 cycles.

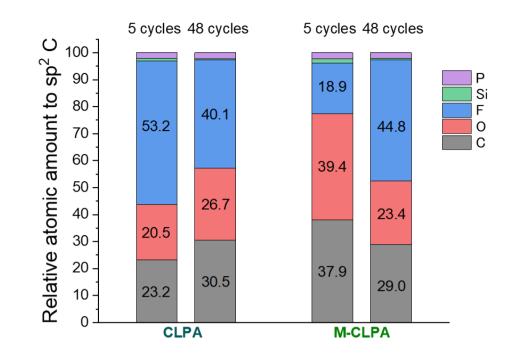

Figure S10. (a) Si 1s, (b) C 1s, and (c) F 1s HAXPES spectra of pristine and electrolyte (1 M LiPF₆ in EC/DMC with 2 vol % FEC) soaked non-matured and matured SiO@C composite electrodes with different binders.

Figure S11. (a) Si 1s, (b) C 1s, and (c) F 1s HAXPES spectra of the non-matured and matured SiO@C composite electrodes with CLPA binder before cycling, after 5 cycles, and after 48 cycles.

Figure S12. (a) O 1s and (b) P 1s HAXPES spectra of the non-matured and matured SiO@C composite electrodes with CLPA binder before cycling, after 5 cycles, and after 48 cycles.

Figure S13. The atomic ratio of elements relative to sp² carbon of non-matured and matured SiO@C composite electrode surfaces with CLPA.

 Table S1. Comparison of electrochemical performance of SiO electrodes with each binder.

-					
Binder	Capacity (mAh g ⁻¹)	Capacity retention (%)	Cycles	Current (A g ⁻¹)	Ref
PAA	700	84.7	50	0.1	[1]
PAA + sorbitol	696	71	500	0.5	[2]
Sodium alginate	923.5	83.7	50	1^{st} to 9^{th} : 0.1 $10^{\text{th}} \sim : 0.3$	[3]
PAA + poly glutamic acid	1387.2	87.3	100	1^{st} : 0.08 $2^{nd} \sim$: 0.16	[4]
Polyacrylamide + poly(tetrafluoroethylene) + styrene butadiene rubber	770	60	300	0.5	[5]
Poly (acrylamide + acrylic acid) Poly (9,9-	734	57.7	300	1^{st} to 3^{rd} : 0.1 $4^{\text{th}} \sim :0.5$	[6]
dioctylfluorene-co-fluorenone-co-methyl	1186	106.9	100	0.1	[7]
benzoic ester) CLPA-20	1322	87.3	90	1 st : 0.025 2 nd ~:0.1	This work
M-CLPA-20	1598	96.5	90	1^{st} : 0.025 $2^{nd} \sim :0.1$	This work

References

- 1 S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui and K. Konno, *J. Phys. Chem. C*, 2011, **115**, 13487–13495.
- 2D. He, P. Li, W. (Alex) Wang, Q. Wan, J. Zhang, K. Xi, X. Ma, Z. Liu, L. Zhang and X. Qu, *Small*, 2020, **16**, 1905736.
- 3 X. Feng, J. Yang, X. Yu, J. Wang and Y. Nuli, *J Solid State Electrochem*, 2013, **17**, 2461–2469.
- 4M.-J. Guo, C.-C. Xiang, Y.-Y. Hu, L. Deng, S.-Y. Pan, C. Lv, S.-X. Chen, H.-T. Deng, C.-D. Sun, J.-T. Li, Y. Zhou and S.-G. Sun, *Electrochimica Acta*, 2022, **425**, 140704.
- 5 T. Kang, J. Chen, Y. Cui, Z. Wang, H. Xu, Z. Ma, X. Zuo, X. Xiao and J. Nan, *ACS Appl. Mater. Interfaces*, 2019, **11**, 26038–26046.
- 6Z. Weng, S. Di, L. Chen, G. Wu, Y. Zhang, C. Jia, N. Zhang, X. Liu and G. Chen, *ACS Appl. Mater. Interfaces*, 2022, **14**, 42494–42503.
- 7H. Zhao, N. Yuca, Z. Zheng, Y. Fu, V. S. Battaglia, G. Abdelbast, K. Zaghib and G. Liu, *ACS Appl. Mater. Interfaces*, 2015, **7**, 862–866.