Electronic Supplementary Information

Discovery of 2,3-dihydro-1*H*-pyrrolo[3,4-*b*]quinolin-1-one derivatives as possible anti-leishmanial agents

Anuradha Seth,^{b,d,†} Anirban Ghoshal,^{a,d,†} Varun Dewaker,^a Ankita Rani,^{b,d} Sangh Priya Singh,^{a,d} Mukul Dutta,^{b,d} Shivani Katiyar^b, Sandeep Kumar Singh,^{c,d} Mamunur Rashid,^c Muhammad Wahajuddin,^{c,d,e} Susanta Kar,^{*,b,d} and Ajay Kumar Srivastava^{*,a,d}

^aMedicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India, *E-mail: ajayk.srivastava@cdri.res.in

^bMolecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India, *E-mail: susantakar@cdri.res.in

^cPharmaceutics and Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow-226031, Uttar Pradesh, India

^dAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, Uttar Pradesh, India

^eInstitute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP UK (Present address)

Table of Contents

1.	Table S1, S2 and S3	S2-S5
2.	¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S6–S30
3.	HRMS Spectra	S31–S41
4.	HPLC Chromatograms	S42-S71

5b 6.77±0.28 11.45±9.19 24.17±1.87 34.33±2.35 59.28±4.5 5c 15.64±4.18 17.81±3.21 22.34±2.4 59.97±2.29 68.21±5.5 5d 14.53±2.63 19.96±3.45 23.11±4.19 58.07±4.98 81.47±6.2 5e 4.72±3.01 22.57±4.41 13.46±1.29 67.62±5.30 87.14±5.4 5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.76 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.5 5m 8.45±0.86 11.09±0.82	% Inhibition on host J774 macrophage cell line							
5h 6.77±0.28 11.45±9.19 24.17±1.87 34.33±2.35 59.28±4.5 5c 15.64±4.18 17.81±3.21 22.34±2.4 59.97±2.29 68.21±5.5 5d 14.53±2.63 19.96±3.45 23.11±4.19 58.07±4.98 81.47±6.2 5e 4.72±3.01 22.57±4.41 13.46±1.29 67.62±5.30 87.14±5.4 5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.76 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.5 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.65 5n 9.16±0.79 </th <th></th> <th>100 µM</th> <th>50 µM</th> <th>25 μΜ</th> <th>12.5 µM</th> <th>6.25 μM</th> <th></th>		100 µM	50 µM	25 μΜ	12.5 µM	6.25 μM		
5c 15.64±4.18 17.81±3.21 22.34±2.4 59.97±2.29 68.21±5.5 5d 14.53±2.63 19.96±3.45 23.11±4.19 58.07±4.98 81.47±6.2 5e 4.72±3.01 22.57±4.41 13.46±1.29 67.62±5.30 87.14±5.4 5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5p 9.04±4.76 <th>1</th> <th>69.88±6.11</th> <th>55.74±3.97</th> <th>14.17±5.26</th> <th>15.62±1.26</th> <th>14.43±0.39</th> <th>5a</th>	1	69.88±6.11	55.74±3.97	14.17±5.26	15.62±1.26	14.43±0.39	5a	
5d 14.53±2.63 19.96±3.45 23.11±4.19 58.07±4.98 81.47±6.2 5e 4.72±3.01 22.57±4.41 13.46±1.29 67.62±5.30 87.14±5.4 5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 <th>95</th> <th>59.28±4.95</th> <th>34.33±2.35</th> <th>24.17±1.87</th> <th>11.45±9.19</th> <th>6.77±0.28</th> <th>5b</th>	95	59.28±4.95	34.33±2.35	24.17±1.87	11.45±9.19	6.77±0.28	5b	
5e 4.72±3.01 22.57±4.41 13.46±1.29 67.62±5.30 87.14±5.4 5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.76 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.95 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.95 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.95 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.13 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.45 6b 12.34±2.	54	68.21±5.54	59.97±2.29	22.34±2.4	17.81±3.21	15.64±4.18	5c	
5f 3.54±2.47 19.21±0.94 26.46±1.46 47.55±2.39 50.56±6.1 5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.345±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.4 6b 12.34±2.77 </th <th>24</th> <th>81.47±6.24</th> <th>58.07±4.98</th> <th>23.11±4.19</th> <th>19.96±3.45</th> <th>14.53±2.63</th> <th>5d</th>	24	81.47±6.24	58.07±4.98	23.11±4.19	19.96±3.45	14.53±2.63	5d	
5g 8.72±5.65 13.47±1.55 24.93±2.95 28.51±2.64 56.37±4.8 5h 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41<	12	87.14±5.42	67.62±5.30	13.46±1.29	22.57±4.41	4.72±3.01	5e	
5 12.31±1.64 16.77±1.22 21.25±1.69 41.27±3.36 73.48±2.8 5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.65 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.75	7	50.56±6.17	47.55±2.39	26.46±1.46	19.21±0.94	3.54±2.47	5f	
5i 6.37±1.08 19.25±1.04 48.45±3.34 59.13±1.57 62.35±3.5 5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.3 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.14 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.14 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.64 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.74	32	56.37±4.82	28.51±2.64	24.93±2.95	13.47±1.55	8.72±5.65	5g	
5j 13.25±1.01 18.49±0.91 25.33±1.80 36.24±4.02 59.61±2.33 5k 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.73 5l 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.93 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.93 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.93 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.13 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.14 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.65 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.75	37	73.48±2.87	41.27±3.36	21.25±1.69	16.77±1.22	12.31±1.64	5h	
5 9.63±1.01 15.62±0.97 23.95±1.46 38.48±3.44 51.64±4.7 51 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.4 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	57	62.35±3.57	59.13±1.57	48.45±3.34	19.25±1.04	6.37±1.08	5i	
51 11.16±0.71 12.43±2.28 26.67±2.43 46.97±1.81 68.15±2.9 5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.4 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	32	59.61±2.32	36.24±4.02	25.33±1.80	18.49±0.91	13.25±1.01	5ј	
5m 8.45±0.86 11.09±0.82 27.65±3.91 23.36±1.52 41.55±2.9 5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.64 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.74	/2	51.64±4.72	38.48±3.44	23.95±1.46	15.62±0.97	9.63±1.01	5k	
5n 9.16±0.79 13.59±1.06 25.61±2.23 46.18±1.01 63.97±4.9 5o 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.44 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.64 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.74	91	68.15±2.91	46.97±1.81	26.67±2.43	12.43±2.28	11.16±0.71	51	
50 12.05±1.62 22.18±2.64 24.16±2.51 67.92±1.79 73.45±2.1 5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.4 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	93	41.55±2.93	23.36±1.52	27.65±3.91	11.09±0.82	8.45±0.86	5m	
5p 9.04±4.76 16.71±3.30 20.33±1.13 51.46±4.76 77.32±6.1 6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.4 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	97	63.97±4.97	46.18±1.01	25.61±2.23	13.59±1.06	9.16±0.79	5n	
6a 9.26±5.47 17.65±4.45 22.37±1.89 42.19±3.76 61.52±4.45 6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.65 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.75	2	73.45±2.12	67.92±1.79	24.16±2.51	22.18±2.64	12.05±1.62	50	
6b 12.34±2.77 15.86±3.45 20.47±2.13 63.89±5.36 90.52±7.6 6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	6	77.32±6.16	51.46±4.76	20.33±1.13	16.71±3.30	9.04±4.76	5р	
6c 10.53±2.41 14.37±5.67 25.76±2.36 27.54±3.16 63.39±5.7	10	61.52±4.40	42.19±3.76	22.37±1.89	17.65±4.45	9.26±5.47	6a	
	50	90.52±7.60	63.89±5.36	20.47±2.13	15.86±3.45	12.34±2.77	6b	
	70	63.39±5.70	27.54±3.16	25.76±2.36	14.37±5.67	10.53±2.41	6c	
6d 5.65±2.28 16.34±6.21 26.65±3.44 45.83±5.62 65.32±5.6	52	65.32±5.62	45.83±5.62	26.65±3.44	16.34±6.21	5.65±2.28	6d	
6e 15.46±2.23 19.08±8.19 23.61±1.12 43.26±3.45 71.58±6.6	55	71.58±6.65	43.26±3.45	23.61±1.12	19.08±8.19	15.46±2.23	6e	
6f 7.88±6.71 5.32±7.33 26.09±0.95 58.29±5.46 67.43±5.3	32	67.43±5.32	58.29±5.46	26.09±0.95	5.32±7.33	7.88±6.71	6f	
6g 11.82±4.53 19.07±6.65 24.88±2.33 36.44±2.93 59.81±4.4	16	59.81±4.46	36.44±2.93	24.88±2.33	19.07±6.65	11.82±4.53	6g	
6h 9.74±5.16 12.37±5.28 24.31±3.67 53.15±5.16 68.34±7.1	2	68.34±7.12	53.15±5.16	24.31±3.67	12.37±5.28	9.74±5.16	6h	
6i 8.79±4.33 12.45±8.17 23.31±1.89 34.55±2.88 48.61±3.3	35	48.61±3.35	34.55±2.88	23.31±1.89	12.45±8.17	8.79±4.33	6i	
7a 12.34±2.95 19.76±4.51 21.33±4.15 62.57±3.21 74.05±7.6	51	74.05±7.61	62.57±3.21	21.33±4.15	19.76±4.51	12.34±2.95	7a	

Table S1. In vitro cytotoxicity of compounds 5a-p, 6a-i, 7a-c, and 8a-b^[a]

7b	17.65±6.71	22.15±3.32	26.42±2.31	44.52±4.61	58.16±5.94
7c	19.16±8.89	13.28±5.61	21.17±0.95	49.11±5.61	62.37±4.55
8 a	14.53±5.54	19.22±6.65	23.74±3.14	37.31±3.45	54.47±6.81
8b	15.14±6.14	13.69±5.13	18.05±2.11	43.28±5.16	59.83±6.32
Miltefosine	5.66±3.6	11.09±4.3	17.19±6.4	24.22±8.3	62.11 ±4.35

^[a]Percentages of inhibition are expressed as mean ± standard deviation for each compound of three individual experiments performed in duplicates.

Table S2. In vitro anti-promastigote and anti-amastigote activities of compounds 5a-p, 6a-i,

Code	Anti-prom	astigote activ	vity	Anti-amastigote activity		
	6.25 μM	12.5 µM	25 µM	6.25 μM	12.5 μM	25 μΜ
5a	63.3±5.4	65.9±5.1	70.2±6.1	51.2±3.1	62.5±6.7	68.5±7.8
5b	12.0±2.3	22.8±3.2	40.7±5.4	47.4±4.3	58.3±7.2	68.2±4.5
5c	43.3±5.2	54.3±4.8	63.8±4.5	52.9±6.6	66.3±6.7	74.9±8.5
5d	46.2±4.6	53.4±7.9	70.1±3.9	55.6±2.5	49.7±5.5	64.8±5.7
5e	29.7±1.1	55.1±8.1	61.9±2.7	29.7±3.1	55.1±4.4	61.9±6.0
5f	36.6±3.5	41.3±6.7	69.2±1.5	29.4±7.6	59.6±6.1	69.6±7.2
5g	25.6±4.4	36.8±4.4	45.9±3.3	26.8±8.8	37.8±4.4	46.72±3.5
5h	47.1±3.6	55.3±5.6	67.2±4.5	41.6±2.4	55.3±6.2	45.5±0.9
5i	53.3±6.7	58.3±6.1	64.1±7.3	53.3±6.2	58.3±6.3	74.1±1.1
5j	52.1±4.1	64.8±3.3	68.3±4.4	64.8±4.8	68.3±6.5	72.7±6.8
5k	55.6±1.0	66.2±7.7	71.7±8.2	76.1±8.8	78.7±7.2	75.7±7.2
51	49.8±0.7	56.4±8.2	69.4±5.4	47.6±5.3	62.8±5.4	66.6±5.4
5m	69.8±0.4	76.9±4.6	85.4±7.7	57.8±6.6	65.3±7.3	85.6±9.3
5n	65.1±0.8	73.5±3.3	78.6±3.1	27.4±2.9	64.3±5.6	75.9±6.4
50	53.5±1.6	51.9±6.4	60.9±5.4	41.7±3.7	52.9±4.5	56.0±5.2
5p	58.9±0.8	61.0±2.2	70.0±6.6	58.9±1.6	62.1±7.1	75.8±8.4
6a	27.9±0.5	33.3±4.9	40.7±3.4	29.2±3.1	34.4±3.1	60.0±6.6
6b	21.3±0.8	32.7±5.7	47.4±4.6	16.6±0.5	25.2±1.0	41.1±9.7

7a-c, and **8a-b**^[a]

6c	11.2±1.4	12.4±7.7	39.8±6.1	12.6±1.4	14.3±1.5	42.9±4.6
6d	10.0±1.3	23.7±8.3	43.4±3.2	11.4±2.3	27.2±3.2	46.9±4.2
6e	8.2±2.2	24.4±3.3	41.2±1.0	9.7±8.2	25.6±2.3	42.1±3.9
6f	29.8±0.7	41.4±1.2	50.2±1.2	21.0±9.0	42.9±5.5	53.9±6.2
6g	27.6±1.5	32.9±2.3	40.6±2.	28.2±2.3	34.0±4.7	31.7±2.7
6h	25.2±1.0	36.2±4.6	45.9±0.9	16.5±7.1	35.3±3.4	47.0±4.4
6i	46.0±3.4	46.7±5.0	52.0±5.5	21.7±6.5	31.5±2.8	47.5±5.4
7a	29.7±3.9	55.1±4.5	61.9±6.2	63.3±3.2	76.0±7.1	75.0±7.6
7b	55.4±4.6	76.1±7.1	79.6±8.1	45.4±2.9	54.1±5.0	72.2±6.8
7c	42.9±3.8	46.9±3.9	76.5±3.6	37.8±4.1	53.2±7.7	46.3±5.1
8a	52.0±7.0	62.8±5.6	72.7±6.9	42.2±5.6	54.8±4.9	71.3±6.9
8b	63.4±7.5	73.8±7.1	77.2±4.2	32.1±4.1	47.6±3.2	69.4±8.2
Miltefosine	49.56± 4.61	85.01±1.61	91.95± 3.52	49.3±12 .04	76.49± 10.1	93.11± 1.81

[a]Percentages of inhibition are expressed as mean ± standard deviation for each compound of three individual experiments performed in duplicates.

Code	LdTOP1	Hydrogen Bond Interactions	Arene-arene / Arene-H Interactions	Secondary Residues
5m	-8.4789	Lys352	Tgp11	Asn178, Ala177, Met254,
				Tyr252, Thr246, Pro257,
				Lys250, His453, Arg314,
				Thr217, Asp353, DT10,
				DG12, DA113, Ile220,
				Asn221
5n	-8.5766	Asn221	Tgp11, DT10	Lys352, His453, Arg314,
				Thr217, Asp353, Ile355,
				DG12, DC112, Asn178,
				Ala177, DA113, Tyr222,
				Ile220
7a	-8.3910	Asn221	DT10, Tgp11	Asn178, DC112, Pro257,
				Ala177, DA113, Tyr252,
				Lys251, DT9, Lys352,
				Arg314, His453, Thr217,
				Tyr222, Ile220
8 a	-9.4846	Asn178	Tgp11, DC112	Ala177, Tyr252, DT9,
				Pro257, DT10, Ile220,
				Asn221, DA113, Lys200,
				Glu182, Met254, Lys251
Camptothecin	-7.7961	Lys352, Asp353,	Tgp11	Thr217, Ile220, His453,
Camptomeeni	-7.7701	Arg314	rghir	Asn221, Tyr222, DT10,
		mg31 +		DC112, DG12, DA113,
				Asn178

 Table S3. Docking scores and binding interaction with LdTOP1.

> <u>¹H, ¹³C, and ¹⁹F NMR Spectra</u>:

Figure S1: ¹H NMR of compound 5a

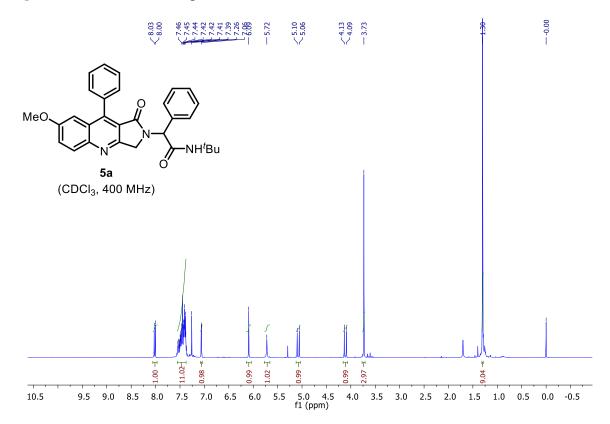
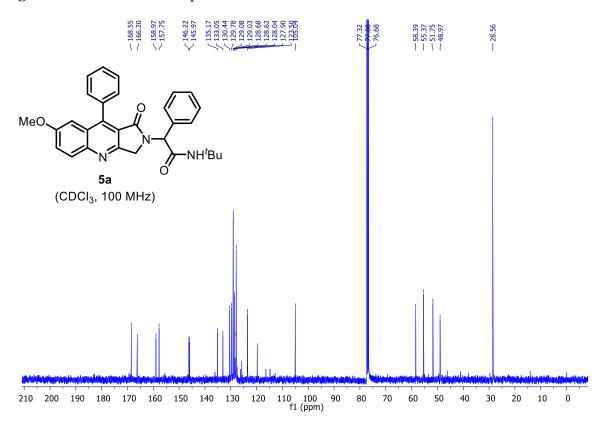
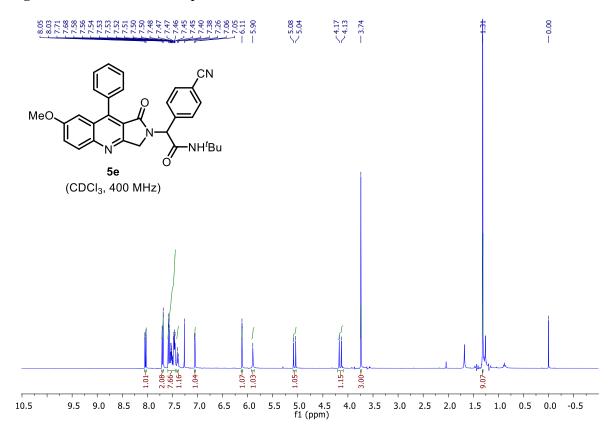
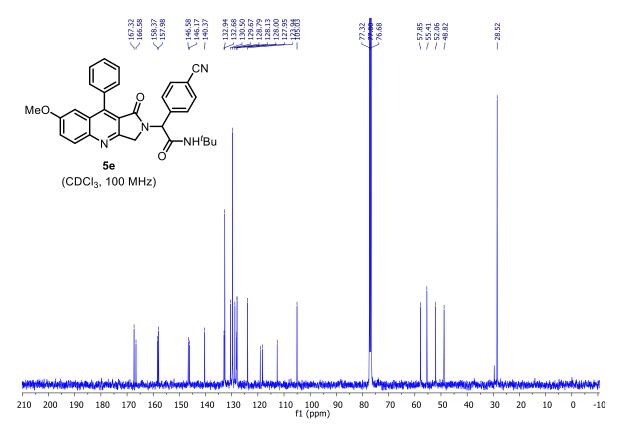
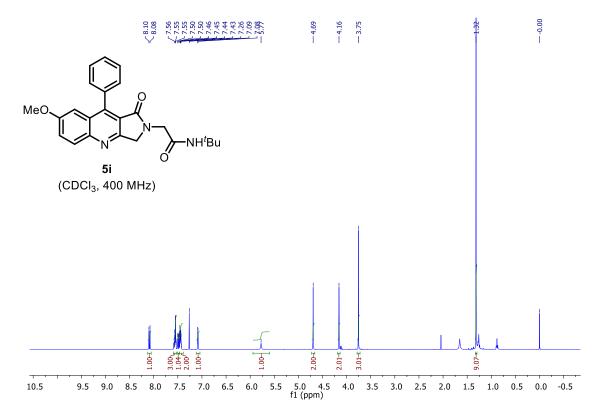
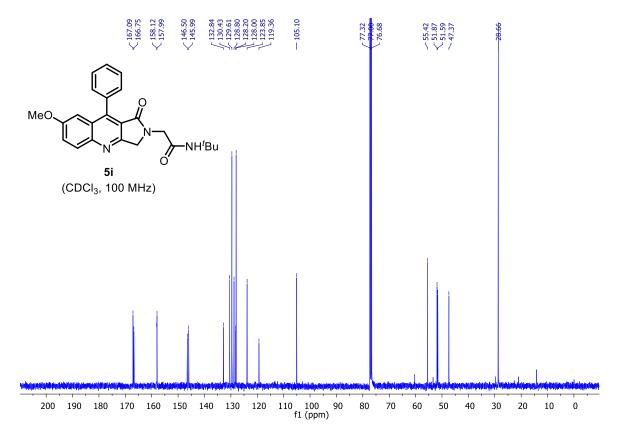
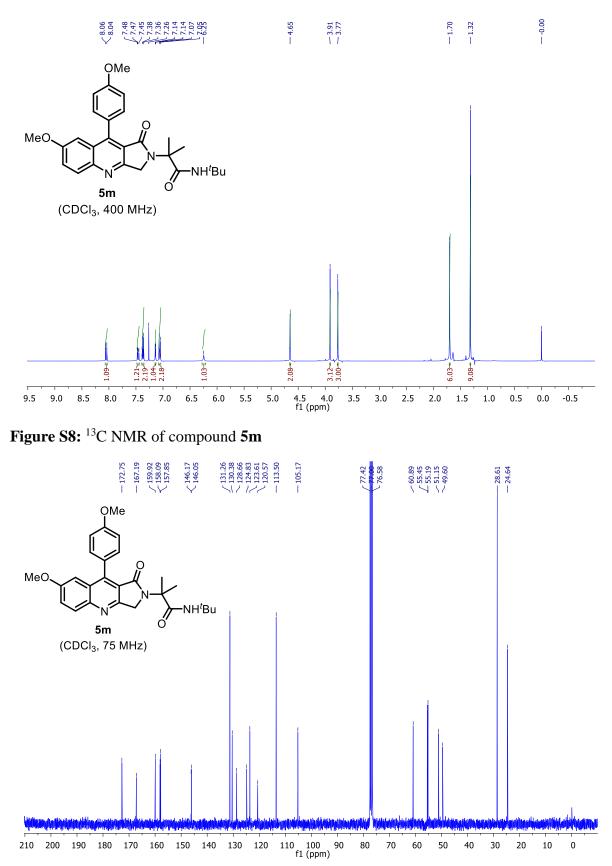



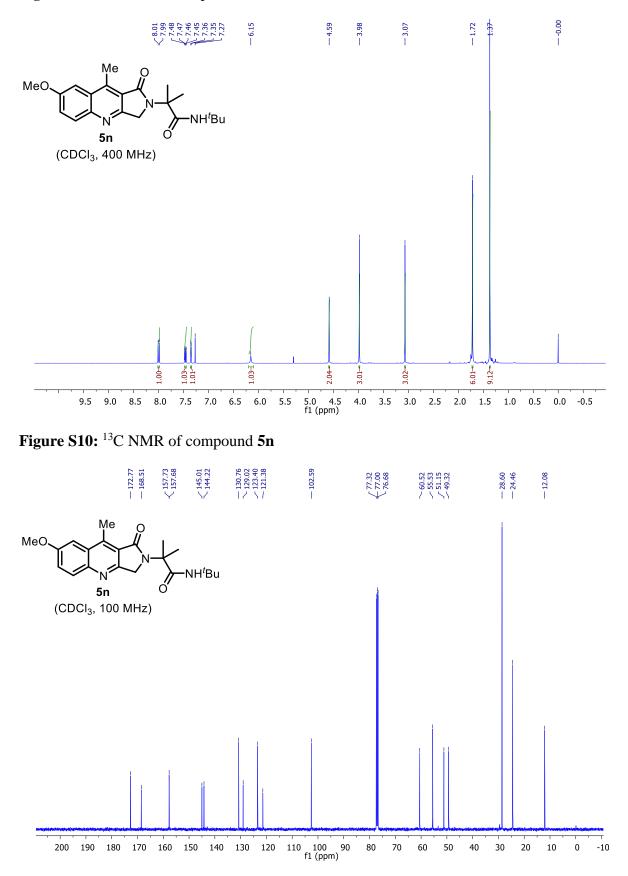
Figure S2: ¹³C NMR of compound 5a

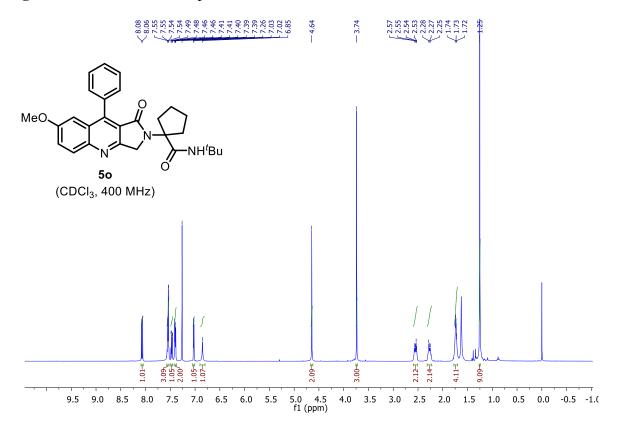
Figure S3: ¹H NMR of compound 5e

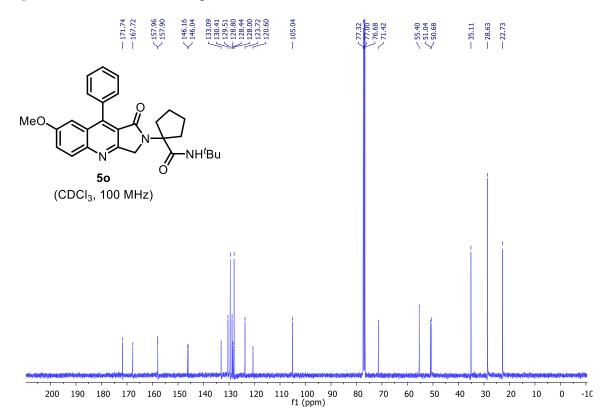




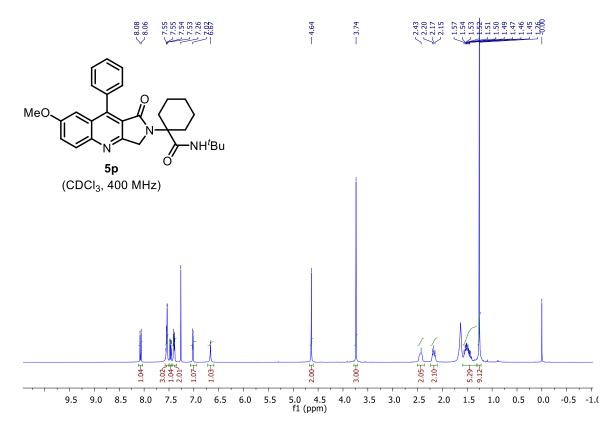

Figure S4: ¹³C NMR of compound 5e

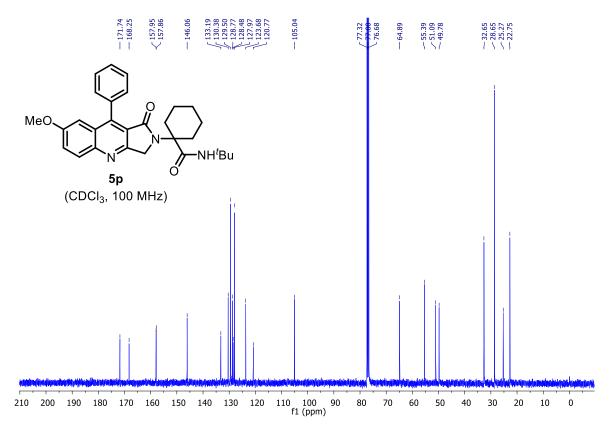

Figure S5: ¹H NMR of compound 5i

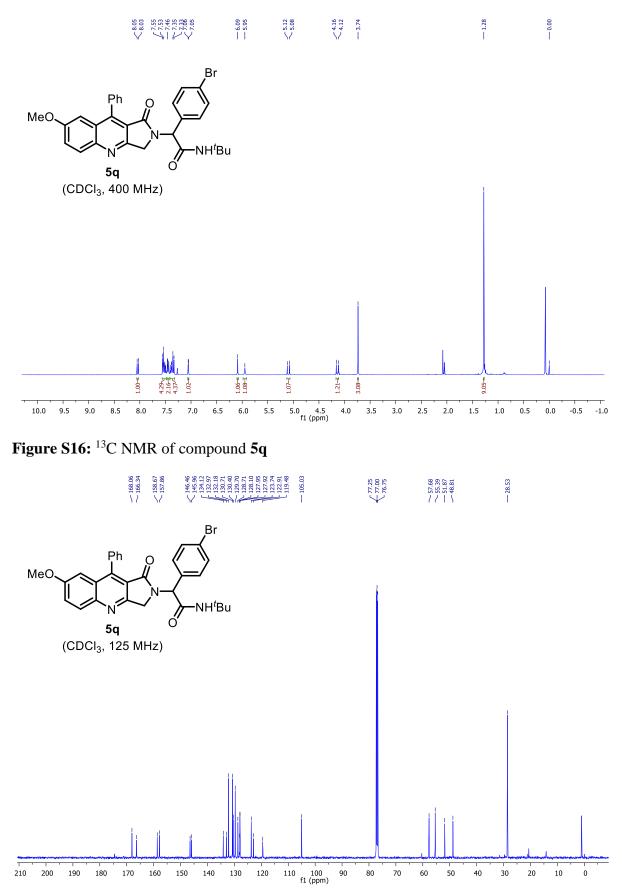


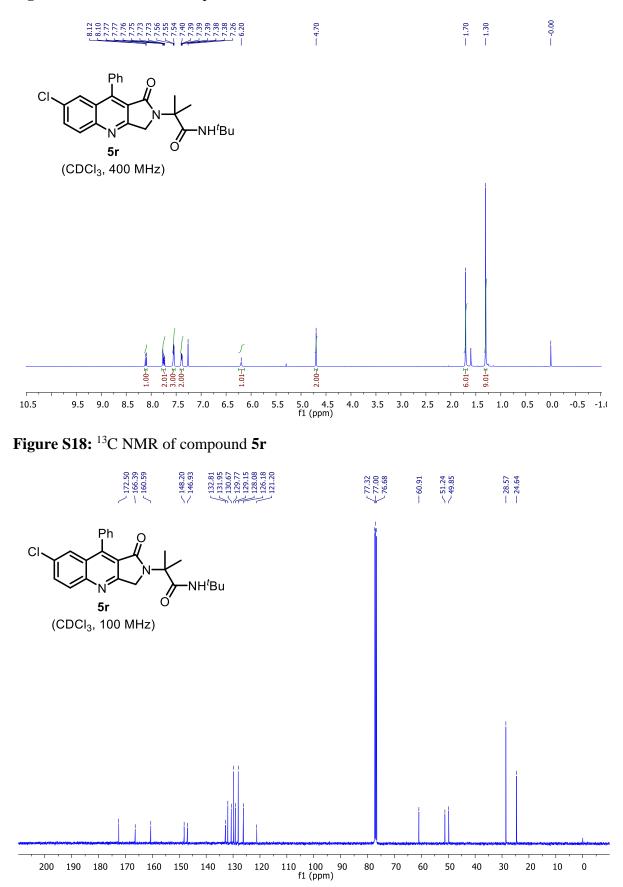

Figure S7: ¹H NMR of compound 5m

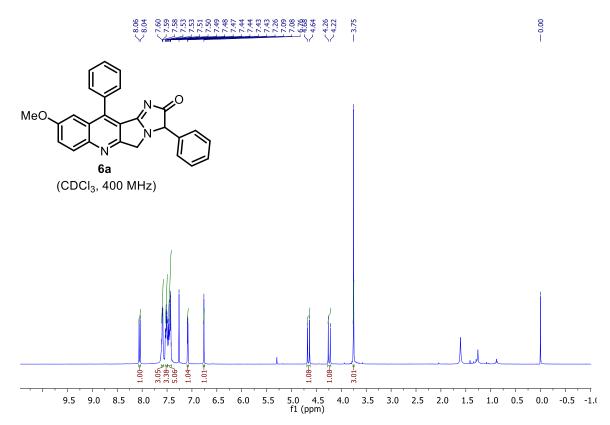

Figure S9: ¹H NMR of compound 5n


Figure S11: ¹H NMR of compound 50




Figure S13: ¹H NMR of compound 5p




Figure S15: ¹H NMR of compound 5q

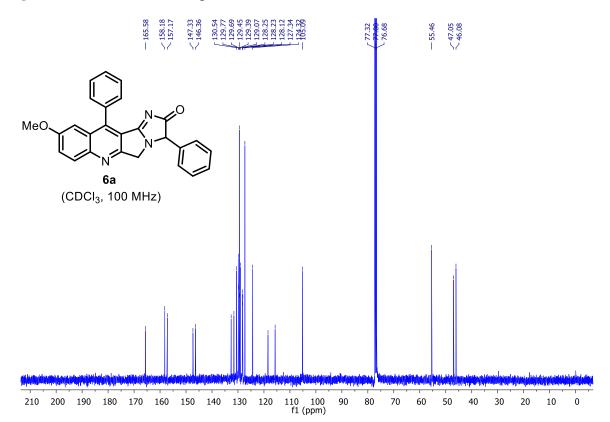

Figure S17: ¹H NMR of compound 5r

Figure S19: ¹H NMR of compound 6a

Figure S21: ¹H NMR of compound 6b

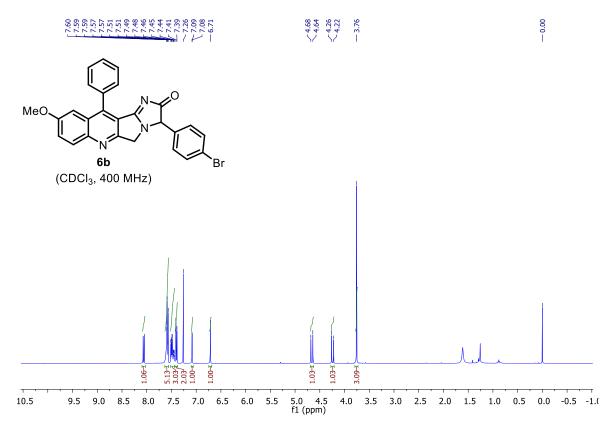
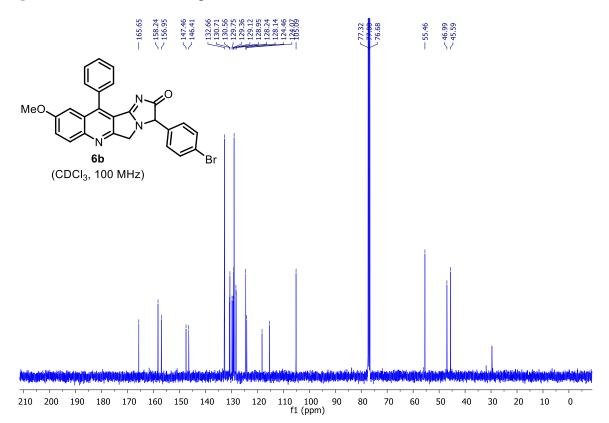



Figure S22: ¹³C NMR of compound 6b

Figure S23: ¹H NMR of compound 6c

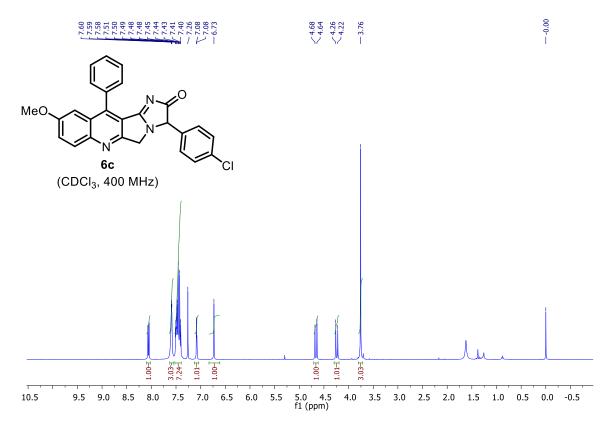
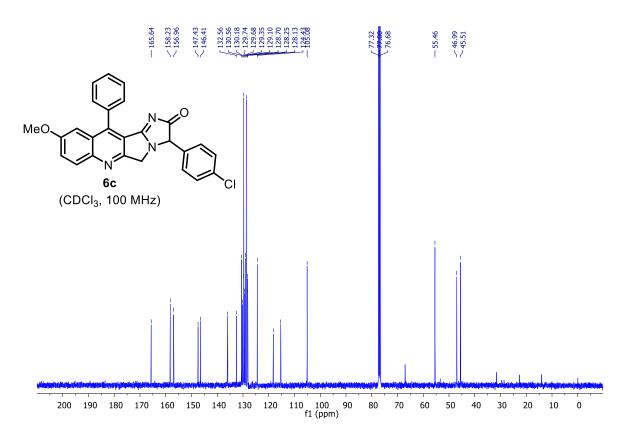
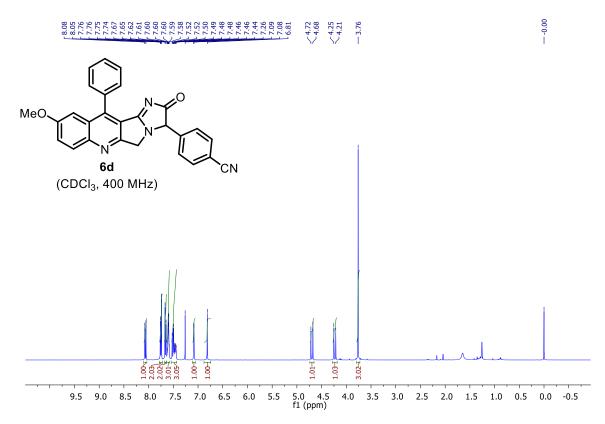
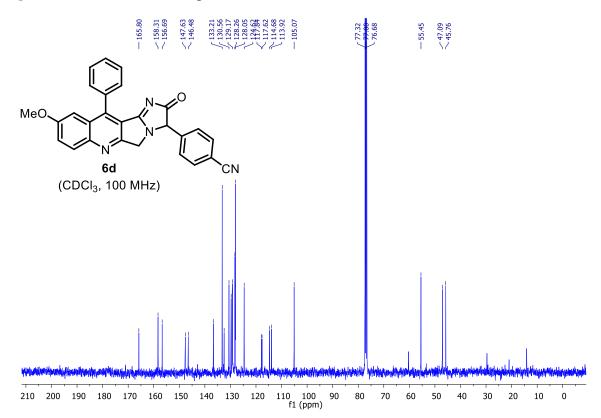
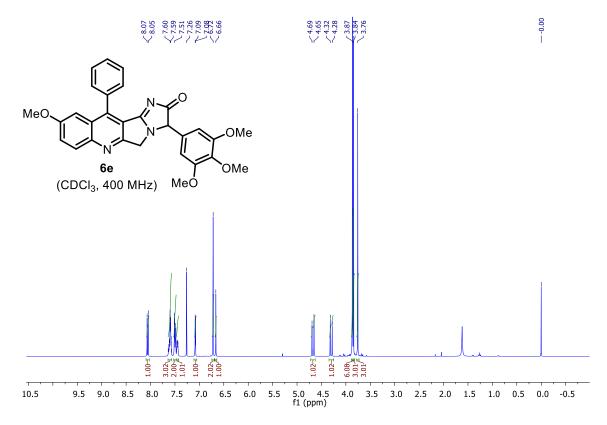
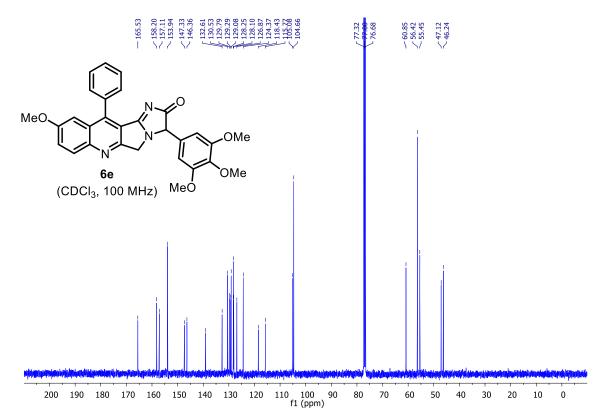
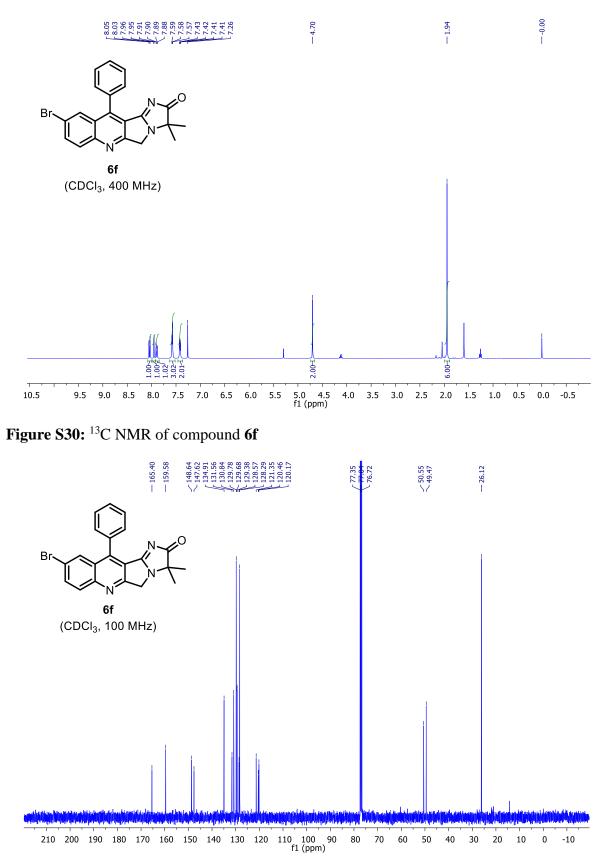
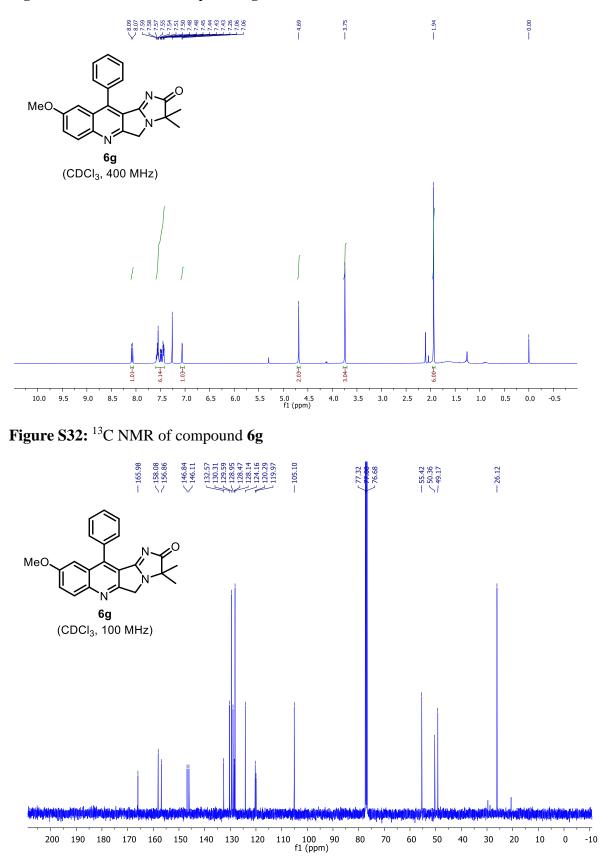



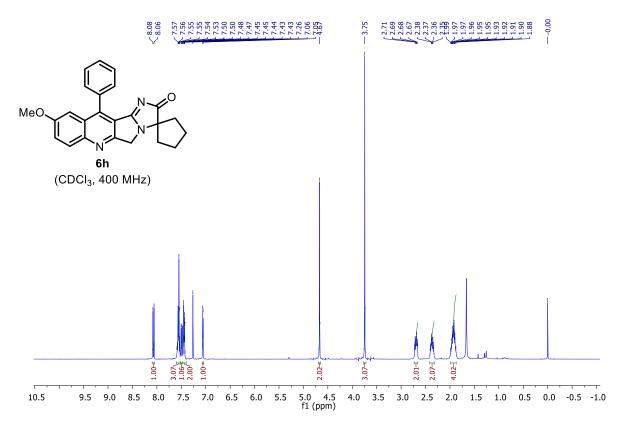
Figure S24: ¹³C NMR of compound 6c

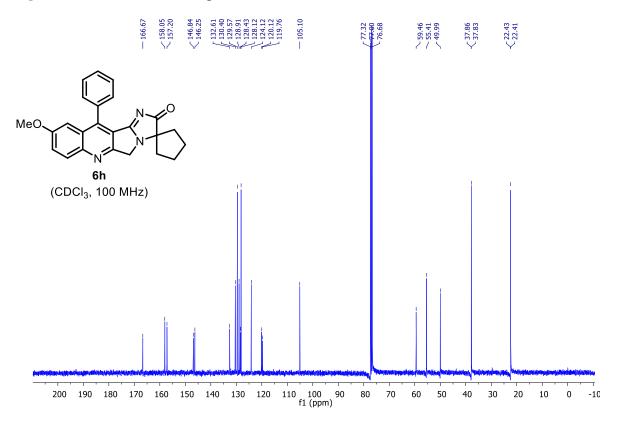




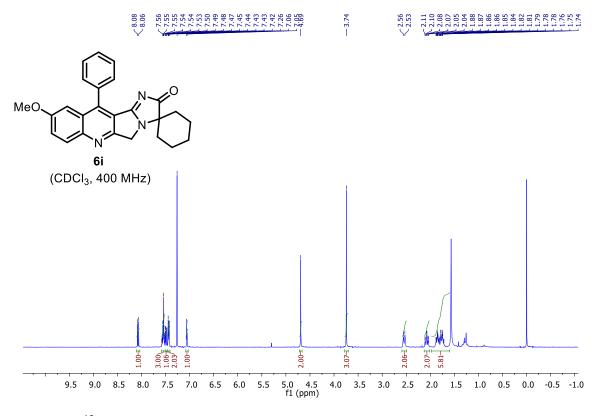

Figure S26: ¹³C NMR of compound 6d

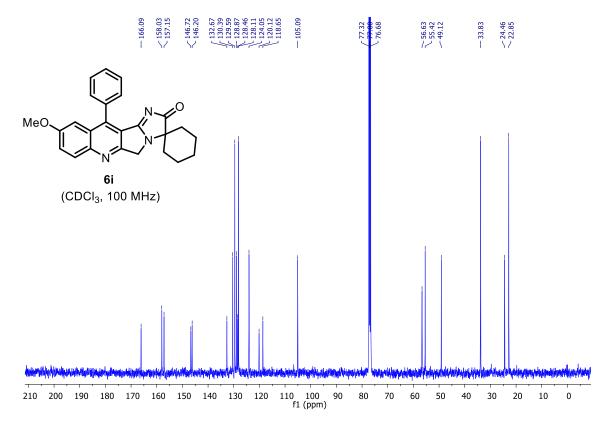

Figure S27: ¹H NMR of compound 6e

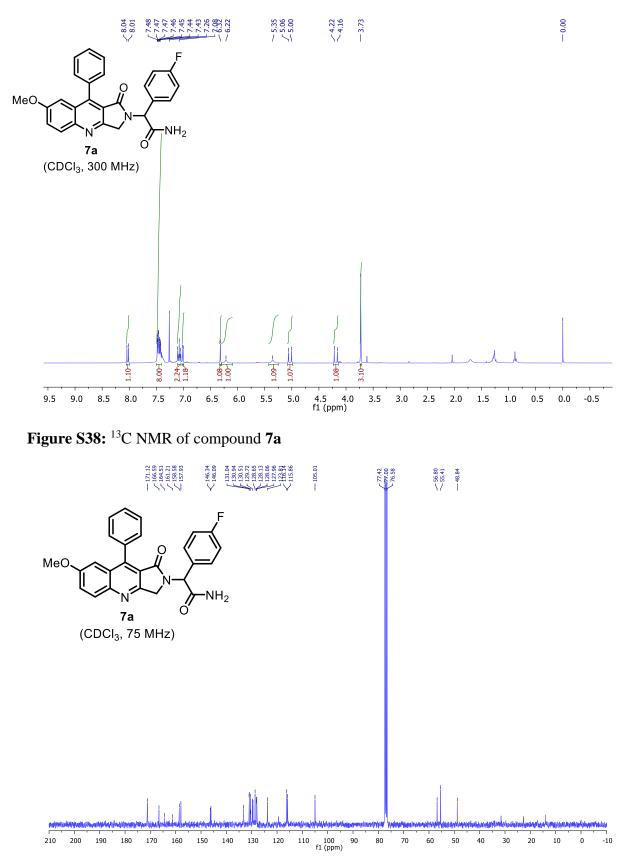

Figure S28: ¹³C NMR of compound 6e

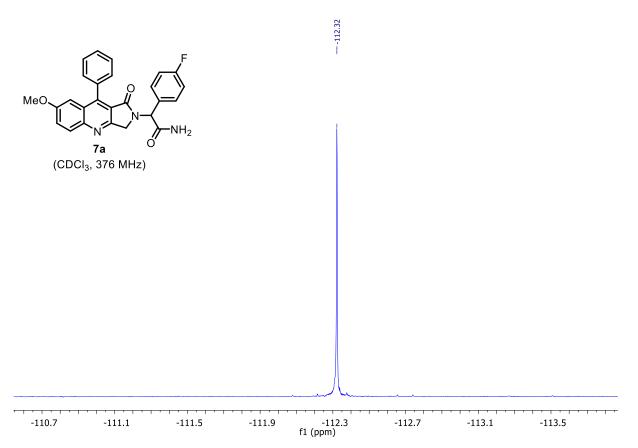

Figure S29: ¹H NMR of compound 6f

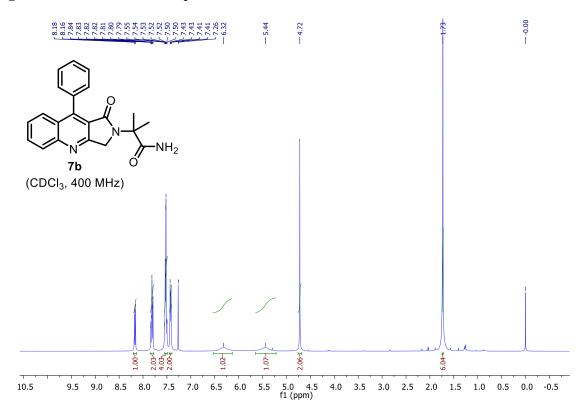

Figure S31: ¹H NMR of compound 6g


Figure S33: ¹H NMR of compound 6h

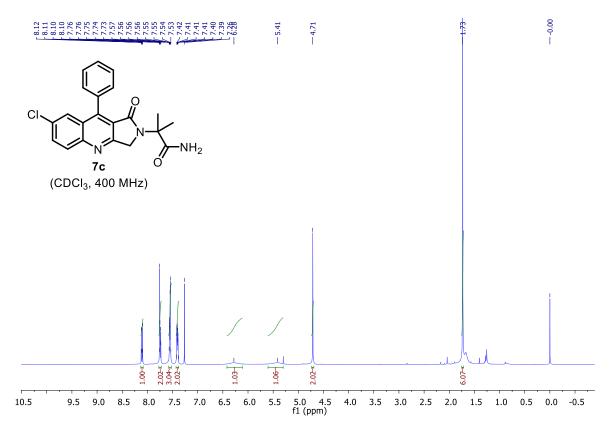

Figure S34: ¹³C NMR of compound 6h


Figure S35: ¹H NMR of compound 6i




Figure S37: ¹H NMR of compound 7a




Figure S40: ¹H NMR of compound 7b

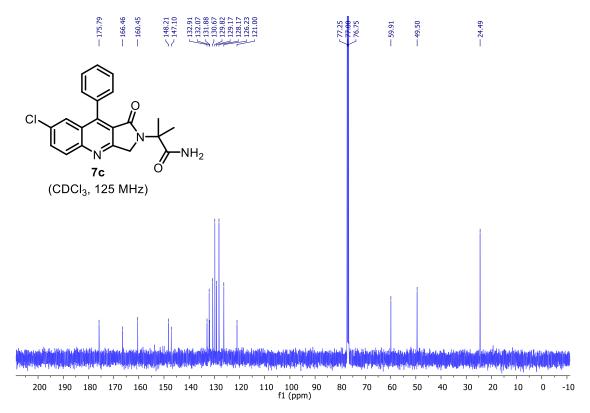


Figure S42: ¹H NMR of compound 7c

Figure S44: ¹H NMR of compound 8a

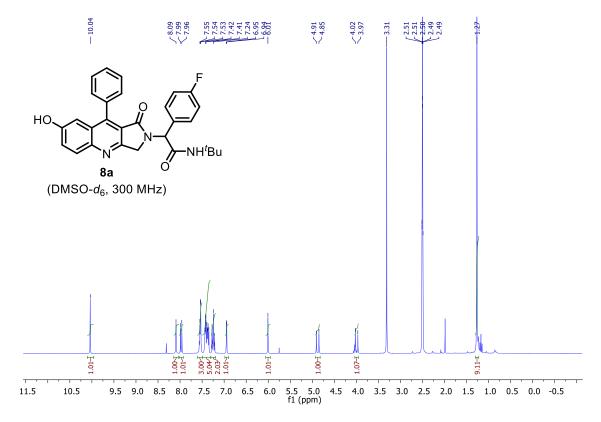
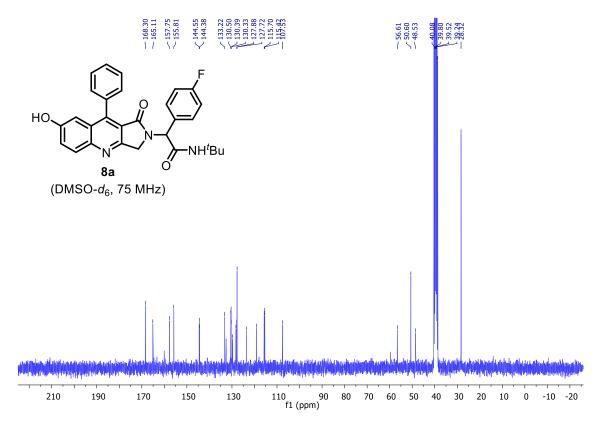
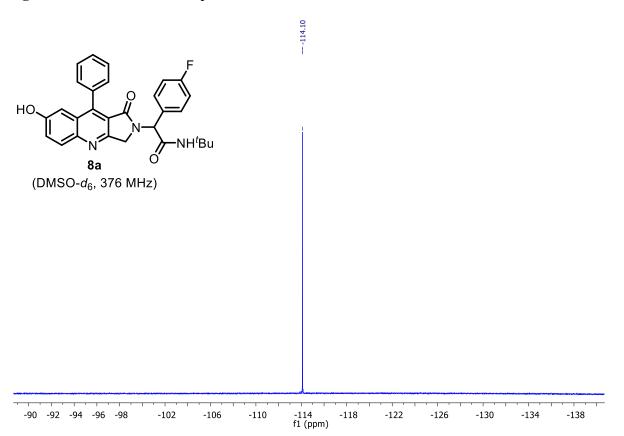




Figure S45: ¹³C NMR of compound 8a

Figure S46: ¹⁹F NMR of compound 8a

Figure S47: ¹H NMR of compound 8b

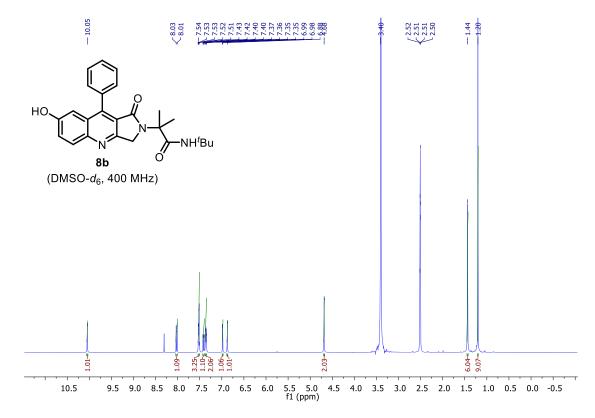
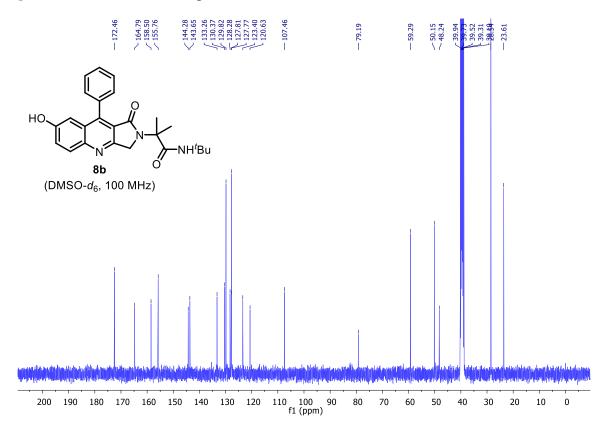
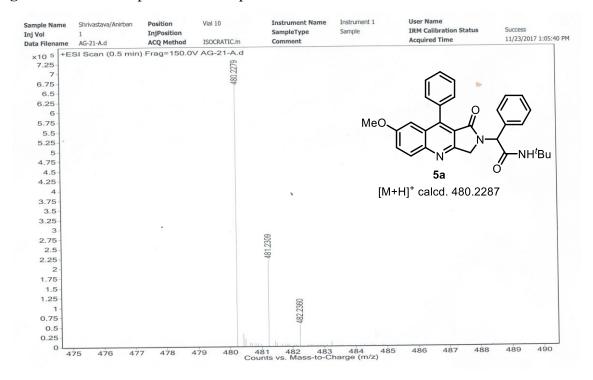
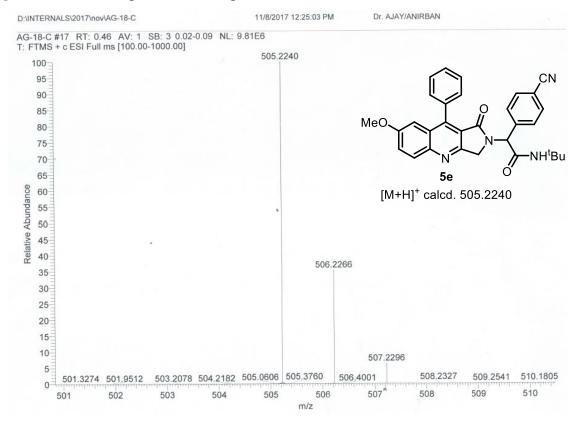
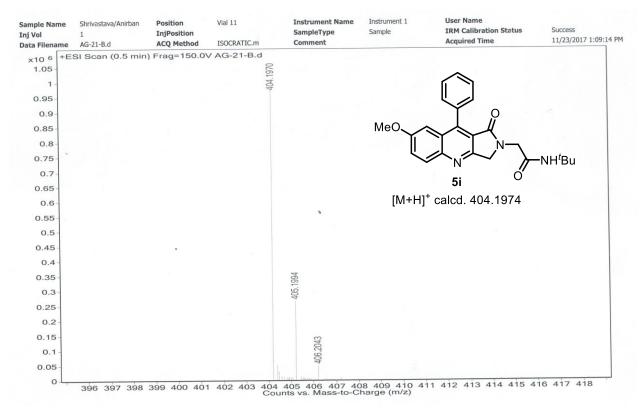
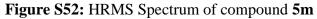
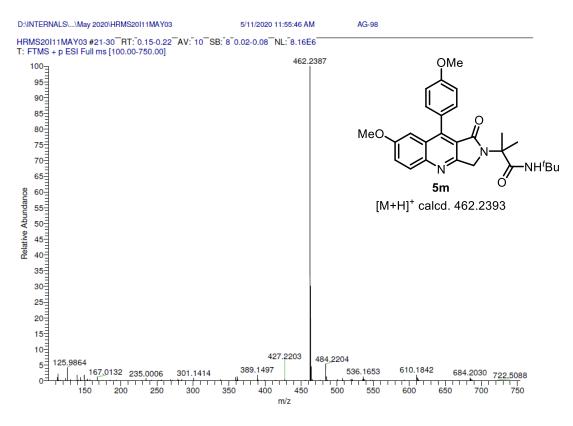




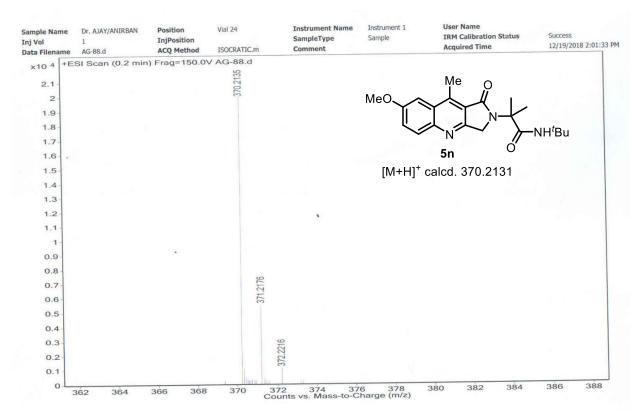
Figure S48: ¹³C NMR of compound 8b

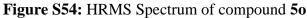


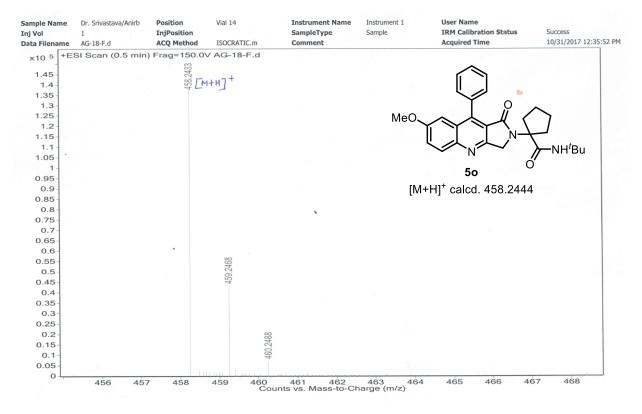

> HRMS Spectra:

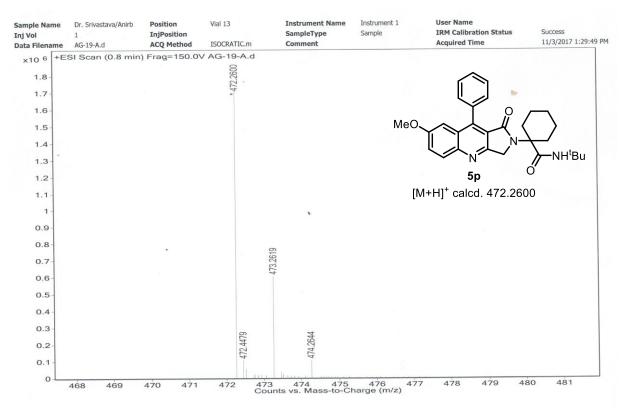

Figure S49: HRMS Spectrum of compound 5a

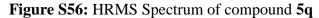


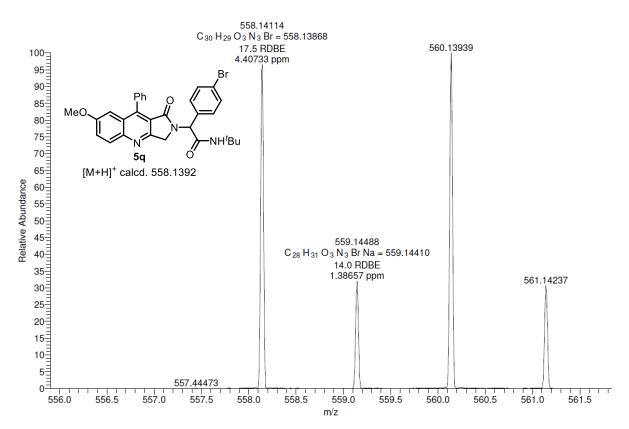



Figure S51: HRMS Spectrum of compound 5i






Figure S53: HRMS Spectrum of compound 5n



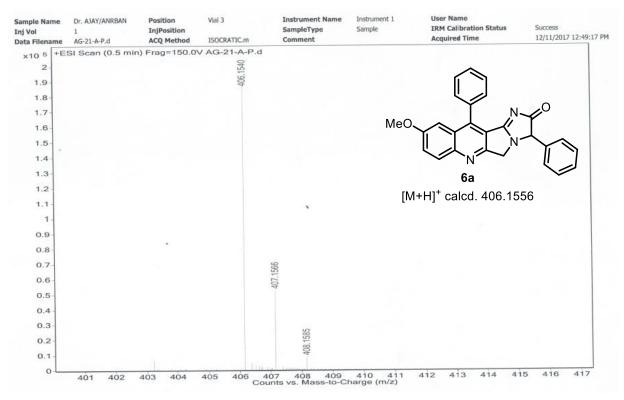
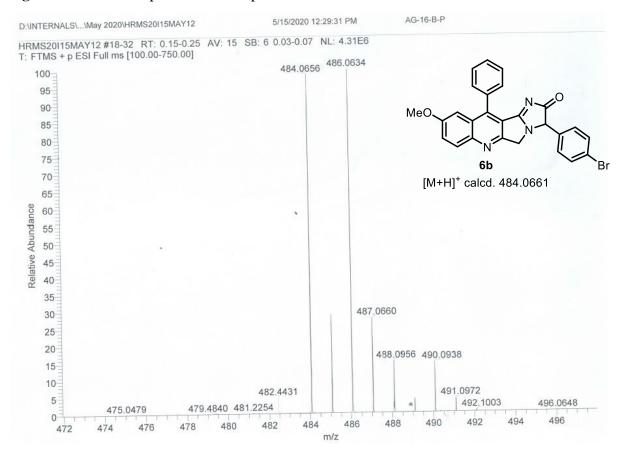


Figure S55: HRMS Spectrum of compound 5p



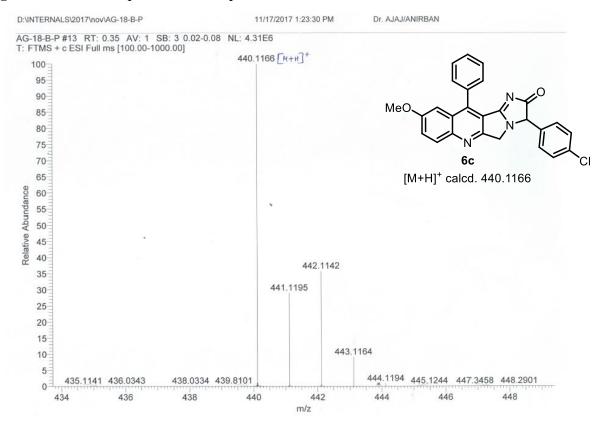
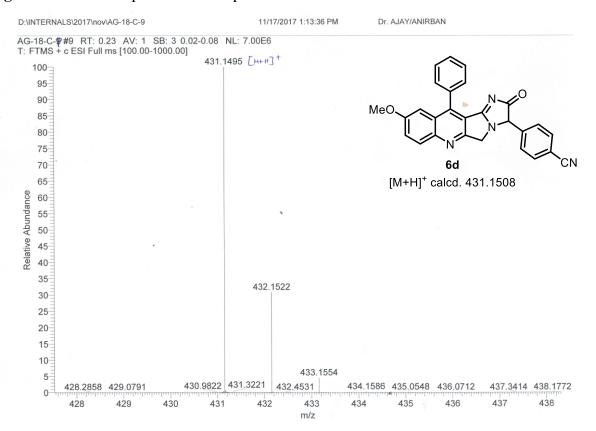


Figure S57: HRMS Spectrum of compound 6a


Figure S58: HRMS Spectrum of compound 6b

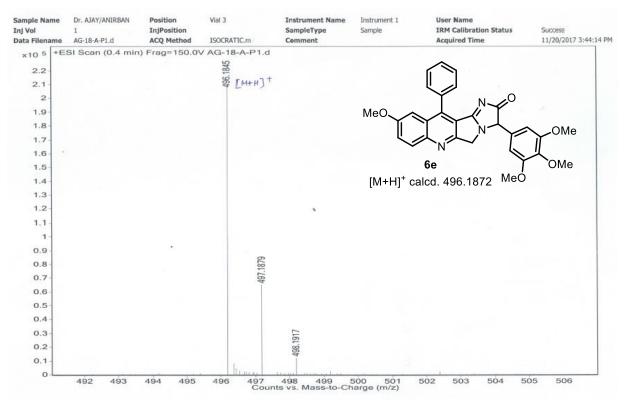
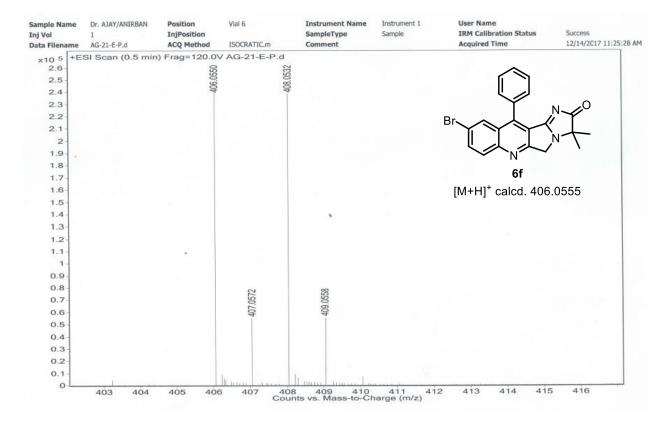


Figure S59: HRMS Spectrum of compound 6c


Figure S60: HRMS Spectrum of compound 6d

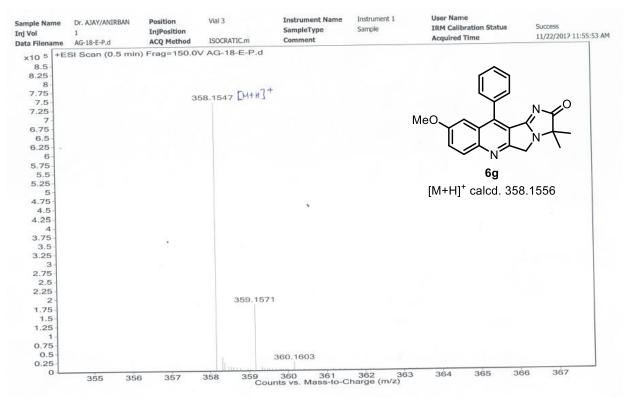
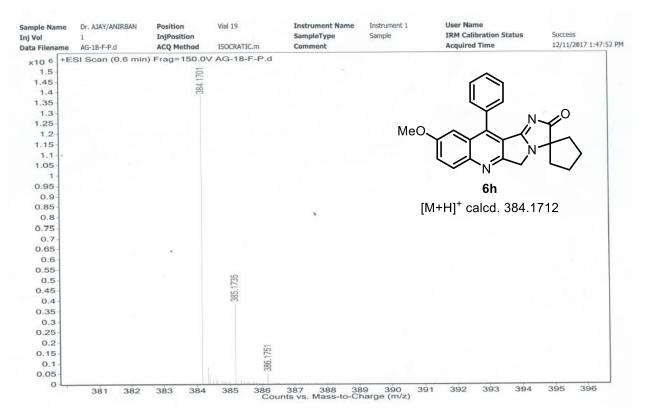


Figure S61: HRMS Spectrum of compound 6e


Figure S62: HRMS Spectrum of compound 6f

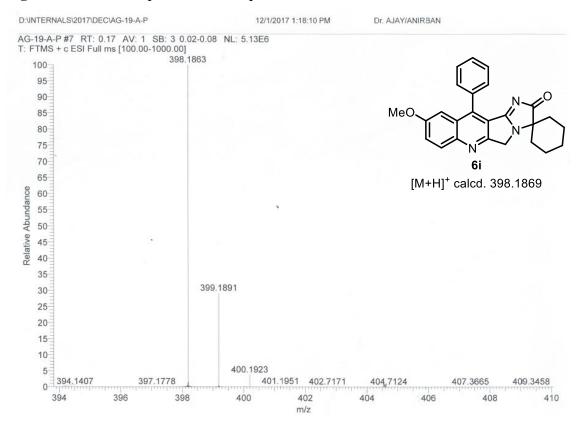
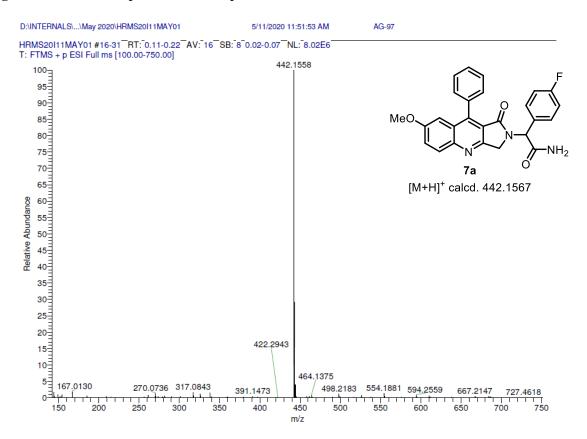


Figure S63: HRMS Spectrum of compound 6g


Figure S64: HRMS Spectrum of compound 6h

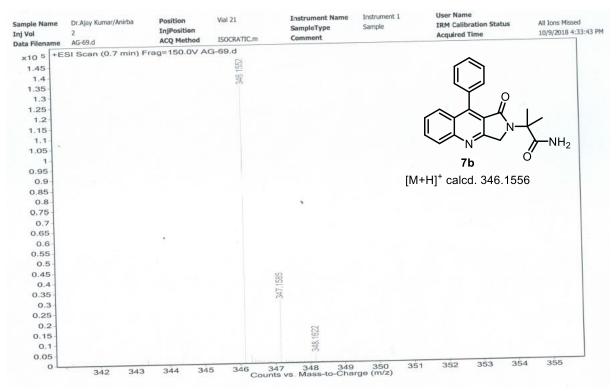
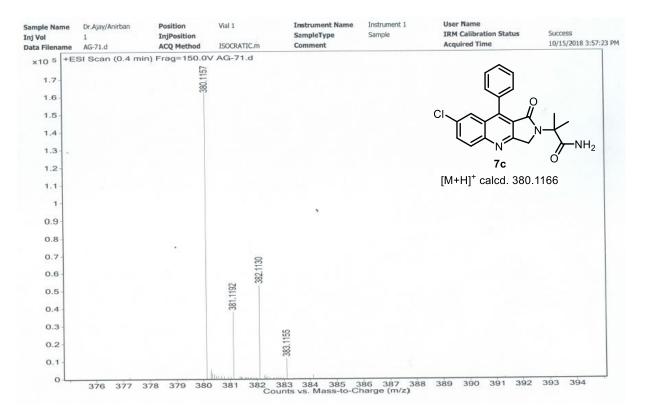


Figure S65: HRMS Spectrum of compound 6i


Figure S66: HRMS Spectrum of compound 7a

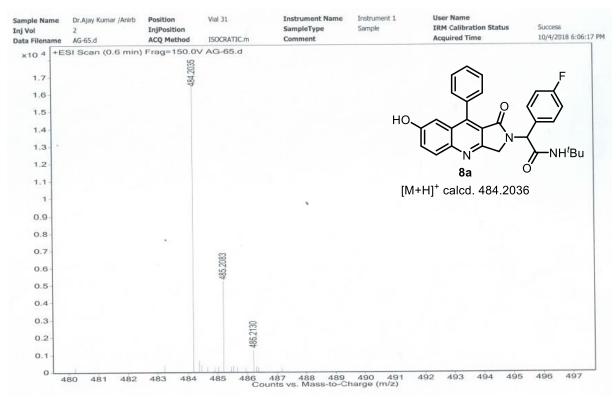


Figure S67: HRMS Spectrum of compound 7b

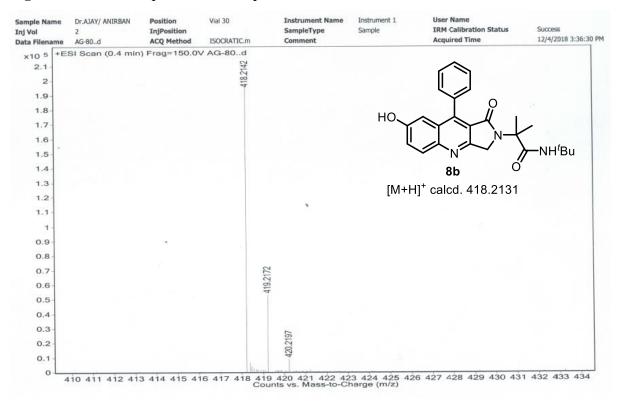

Figure S68: HRMS Spectrum of compound 7c

Figure S69: HRMS Spectrum of compound 8a

Figure S70: HRMS Spectrum of compound 8b

HPLC Chromatograms:

Figure S71. HPLC of compound 5a

Data File C:\CHEM32\1\DATA\ANIL-22-04-2020-2 2020-04-22 12-37-05\046-0201.D Sample Name: S-017-0970 Acq. Operator : CBRS-REPOSITORY Acq. Instrument : Instrument 1 Seq. Line : 2 Location : Vial 46 : 4/22/2020 12:51:04 PM Inj: 1 Inj Volume: 5.000 µl : C:\CHEM32\1\DATA\ANIL-22-04-2020-2 2020-04-22 12-37-05\ACN-WATER-90-10.M Injection Date : 4/22/2020 12:51:04 PM Acq. Method Last changed : 4/20/2020 3:41:17 PM by CBRS-REPOSITORY Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 4/20/2020 3:41:17 PM by CBRS-REPOSITORY Method Info : OSDD Additional Info : Peak(s) manually integrated DAD1A, SIg-220,20 Ref-off (ANIL-22-04-2020-2 2020-04-22 12-37-05/046-0201.D mAll 2500 2000 MeC 1500 1000 NH^tBu 500 4474 ć 5a 1.853 4.871 0 1 22.04.2020 mAU = 2500 2000 1500 1000 500 475 018 0 Area Percent Report Sorted By Signal Multiplier 1.0000 : Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 A, Sig=220,20 Ref=off Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU*s] [mAU] % -------1 3.853 BV 4.017 VB 0.0790 305.30634 0.1004 344.22580 58,34921 1,5944 52.54739 1.7977 2 4.474 BV 3 0.0803 725.13135 140.39035 3,7869 4.871 VB 0.0909 289.94571 49.09618 1.5142 0.1000 1.74836e4 2755.58032 91.3067 5 5.166 BV Page 1 of 2 Instrument 1 4/22/2020 1:01:54 PM CBRS-REPOSITORY Data File C:\CHEM32\1\DATA\ANIL-22-04-2020-2 2020-04-22 12-37-05\046-0201.D

Data File C:\CHEM32\1\DATA\ANIL-22-04-2020-2 2020-04-22 12-37-05\046-0201.L Sample Name: S-017-0970

Totals :

1.91482e4 3055.96345

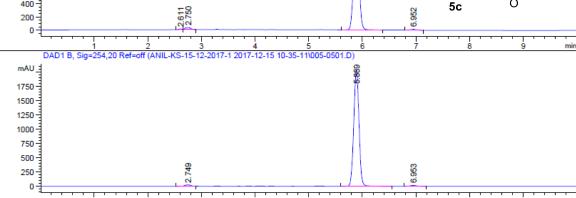
#	[min]		[min]	Area [mAU*s]		%
-						
1	4.018	BB	0.0951	400.85669	67.67677	1.8098
2	4.475	VV	0.0870	349.72238	60.88288	1.5789
3	5.166	BV	0.1105	2.13987e4	3100.92920	96.6113
Total	5:			2.21493e4	3229.48886	

Figure S72. HPLC of compound 5b

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\009-0101.D Sample Name: AG-16-A

```
_____
Acq. Operator : Dr. Anil Kumar K.S.
                                             Seq. Line : 1
Acq. Instrument : Instrument 1
                                              Location : Vial 9
Injection Date : 12/15/2017 12:53:24 PM
                                                    Inj: 1
                                             Inj Volume : 3.000 µl
Acq. Method
               : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info
               : OSDD
        DAD1 A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\009-0101.D)
    mAU -
    200-
                                                              MeO
    150-
    100
                                                                                         NH<sup>t</sup>Bu
                                                 529
                                                                           5b
     50-
     0-
                                     017-2 2017-12-15 12-51
                                                    34\0
                                                        -0101.D
    mAU -
                                                    ß
    300-
    250-
    200
    150
    100
     50-
     0-
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.529	BV	0.0877	74.75621	13.28310	4.9067
2	4.955	BV	0.0894	1448.79443	250.87790	95.0933


Totals : 1523.55064 264.16099

#		[min]	Area [mAU*s]	Height [mAU]	Area %
- 1	4.955	 	1999.90173		
Totals	:		1999.90173	346.87448	

Figure S73. HPLC of compound 5c

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\005-0501.D Sample Name: AG-18-B

Acq. Operator	: Dr. Anil Kumar K.S.	Seq. Line :	5
Acq. Instrument	: Instrument 1	Location : Via	al 5
Injection Date	: 12/15/2017 11:24:59 AM	Inj: :	1
		Inj Volume : 3.0	000 µl
Acq. Method	: C:\CHEM32\1\DATA\ANIL-KS-15-1	2-2017-1 2017-12	-15 10-35-11\ACN-WATER-90-10.M
Last changed	: 12/15/2017 10:35:01 AM by Dr.	Anil Kumar K.S.	
Analysis Method	: C:\CHEM32\1\METHODS\ACN-WATER	-90-10.M	
Last changed	: 12/15/2017 10:35:01 AM by Dr.	Anil Kumar K.S.	
Method Info	: OSDD		
DAD1 A, Sig	=220,20 Ref=off (ANIL-KS-15-12-2017-1 2017-1	2-15 10-35-11\005-0501.D)
mAU			ې را 👔
1600			<u>ب</u> ل ا
1400 -			Ý o Ø N
1200			MeO, A L
1000 -			
800			
600			N ^N N ^{HⁱBu}
400	-0		5c O

#	[min]		[min]		Height [mAU]	
1	2.611	vv	0.0536	42.89240	12.63753	0.3528
2	2.750	VB	0.1211	238.73804	31.98623	1.9639
3	5.889	BV	0.1044	1.17859e4	1753.70935	96.9545
4	6.952	BB	0.1168	88.57812	11.90393	0.7287

Totals : 1.21561e4 1810.23704

]	[min]	Area [mAU*s]		%
	49 ['] VV '	0.1286	180.87119 1.37997e4	22.78513	1.2834
3 6.9	53 BB	0.1180	112.80927 1.40934e4		0.8004

Figure S74. HPLC of compound 5d

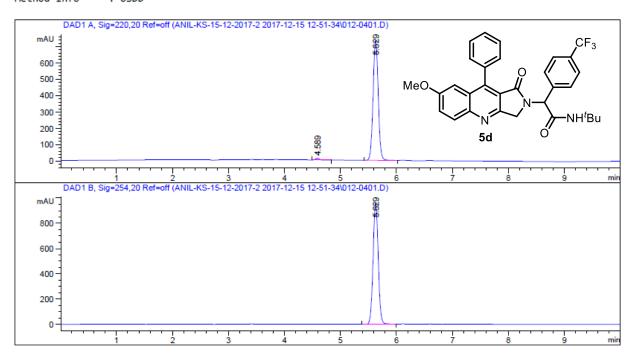
Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\012-0401.D Sample Name: AG-16-D

```
Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 4

Acq. Instrument : Instrument 1 Location : Vial 12

Injection Date : 12/15/2017 1:29:21 PM Inj : 1

Inj Volume : 3.000 µl


Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

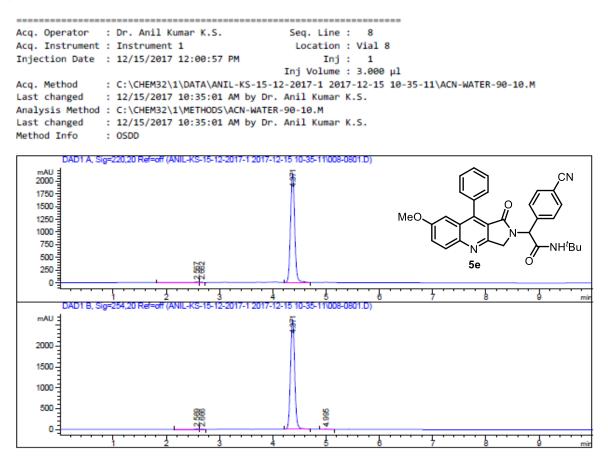
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

Method Info : OSDD
```


#			[min]	Area [mAU*s]		
1	4.589 5.629	VB	0.0735	49.19337 4702.18848	10.34305	1.0353

Totals : 4751.38185 744.30411

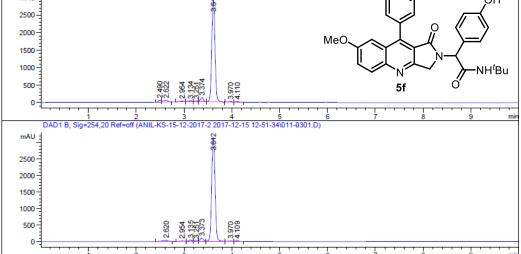

Signal 2: DAD1 B, Sig=254,20 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.629	BV	0.1007	6156.72510	961.58978	100.0000

Totals : 6156.72510 961.58978

Figure S75. HPLC of compound 5e

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\008-0801.D Sample Name: AG-18-C


	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	2.567	w	0.1949	224.47668	14.63903	1.9014
2	2.662	VB	0.0554	37.57271	10.58339	0.3183
3	4.371	BV	0.0851	1.15436e4	2134.05884	97.7803

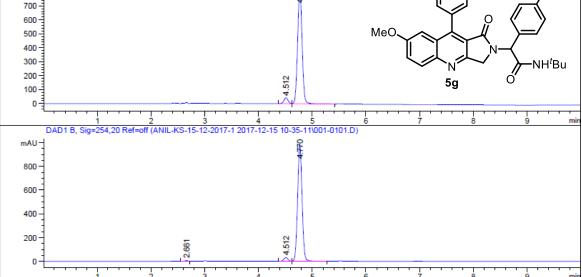
Peak I #	RetTime [min]		Width	Area [mAU*s]	Height	Area %
					[]	
					•	
1	2.569	BV	0.0643	29.10434	6.74852	0.2012
2	2.666	VB	0.0546	22.12838	6.36094	0.1530
3	4.371	BV	0.0861	1.43707e4	2617.52319	99.3653
4	4.995	BB	0.0915	40.56085	7.01396	0.2805
Total	s :			1.44625e4	2637.64661	

Figure S76. HPLC of compound 5f

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\011-0301.D Sample Name: AG-16-C

```
Acq. Operator : Dr. Anil Kumar K.S.
                                           Seq. Line : 3
                                           Location : Vial 11
Acq. Instrument : Instrument 1
Injection Date : 12/15/2017 1:17:24 PM
                                                 Inj: 1
                                          Inj Volume : 3.000 µl
            : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M
Acq. Method
Last changed
             : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed
            : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info
              : OSDD
         AD1 A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\011-0301.D)
   mAU-
                                     012
                                                                                       ОH
```


#.	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.490	BV	0.0601	221.87688	56.20625	1.4357
2	2.622	VB	0.0964	368.11603	54.76589	2.3820
3	2.954	BV	0.0744	138.84819	26.80680	0.8985
4	3.134	VV	0.0745	183.18430	36.55915	1.1853
5	3.251	VV	0.0622	119.30866	28.90448	0.7720
6	3.374	VB	0.0723	535.85718	115.05862	3.4674
7	3.612	BB	0.0726	1.37379e4	2935.39307	88.8951
8	3.970	BV	0.0812	64.03028	11.82412	0.4143
9	4.110	VB	0.0788	84.93763	16.85517	0.5496


Totals : 1.54540e4 3282.37354

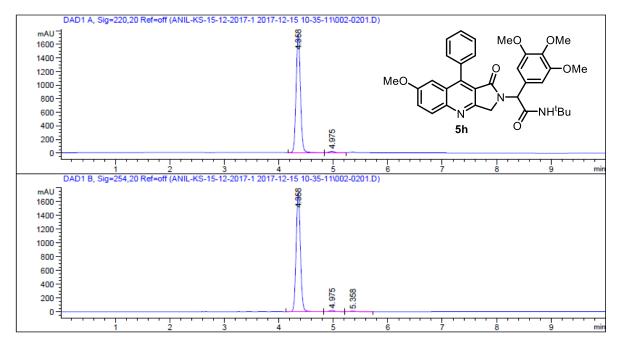
Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.620	BV	0.1155	321.04678	38.40248	1.9249
2	2.954	BV	0.0682	74.12491	15.96286	0.4444
3	3.135	VV	0.0654	171.70801	40.57630	1.0295
4	3.251	VV	0.0610	119.41612	29.66819	0.7160
5	3.373	VB	0.0735	446.52136	93.80724	2.6772
6	3.612	BB	0.0793	1.53550e4	3129.08081	92.0628
7	3.970	BV	0.0788	75.03034	14.38816	0.4499
8	4.109	VB	0.0780	115.98534	23.31987	0.6954

Figure S77. HPLC of compound 5g

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\001-0101.D Sample Name: AG-136

Acq. Operator	: Dr. Anil Kumar K.S. Seq. Line : 1
Acq. Instrument	: Instrument 1 Location : Vial 1
Injection Date	: 12/15/2017 10:36:55 AM Inj: 1
	Inj Volume : 3.000 μl
Acq. Method	: C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\ACN-WATER-90-10.M
Last changed	: 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Analysis Method	: C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed	: 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info	: OSDD
DAD1 A, Si	g=220,20 Ref=off (ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\001-0101.D)
mAU_	E OMe
700	

	[min]			
 1 4.512 2 4.770	VV 0.0822	230.72125 4768.02051	43.26201	4.6156

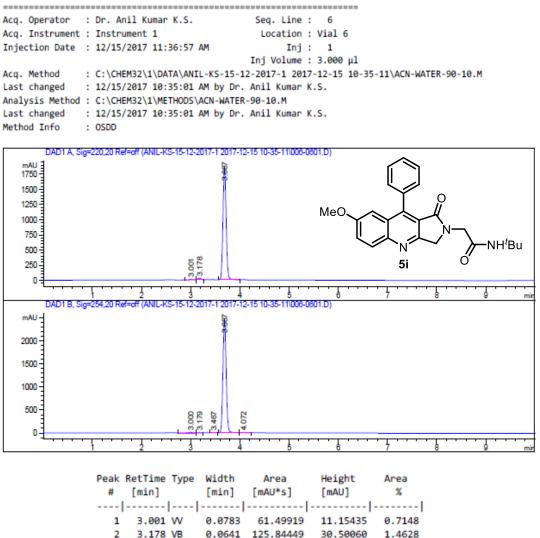

Totals : 4998.74176 868.79546

Peak R	etTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-		·				
1	2.661	vv	0.0509	21.22003	6.71313	0.3626
2	4.512	vv	0.0823	168.00214	31.45425	2.8707
3	4.770	VB	0.0894	5663.09131	980.83392	96.7667
Totals	:			5852.31347	1019.00130	

Figure S78. HPLC of compound 5h

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\002-0201.D Sample Name: AG-18-A

```
------
Acq. Operator : Dr. Anil Kumar K.S.
                                       Seq. Line : 2
Acq. Instrument : Instrument 1
                                         Location : Vial 2
Injection Date : 12/15/2017 10:48:53 AM
                                              Inj: 1
                                       Inj Volume : 3.000 µl
            : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\ACN-WATER-90-10.M
Acq. Method
Last changed
            : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info
             : OSDD
```



Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.358	BV	0.0863	9576.26074	1736.92810	98.6785
2	4.975	VV	0.1007	128.24675	19.50057	1.3215
Total	ls :			9704.50749	1756.42867	

	[min]		[min]	Area [mAU*s]		Area %
		·				
1	4.358	BV	0.0838	9417.81641	1723.43262	98.0696
2	4.975	vv	0.0966	120.32935	19.32729	1.2530
3	5.358	VB	0.0936	65.05067	10.90698	0.6774
Totals	:			9603.19642	1753.66689	

Figure S79. HPLC of compound 5i

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\006-0601.D Sample Name: AG-21-B

-	2.70		0.0041	120.04440	50.50000	1.4020
3	3.687	BV	0.0685	8415.78418	1870.13306	97.8224

_						
т	0	t	а	1	s	
	_	_	_	_	_	-

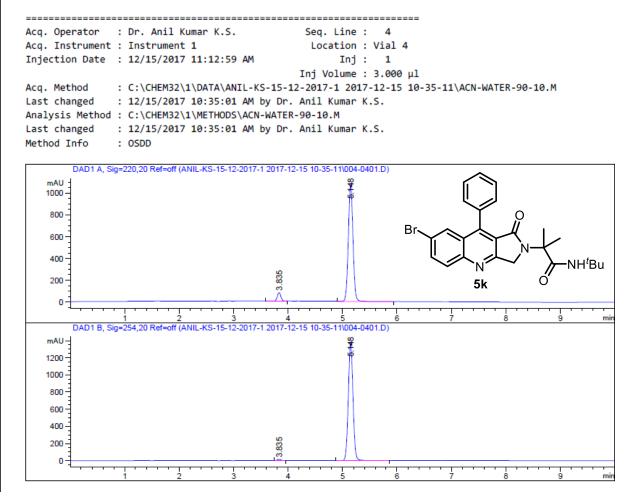
8603.12786 1911.78800

#	RetTime [min]		[min]		Height [mAU]	Area %
1	3.000	BV	0.0695	65.43272	14.26784	0.5651
2	3.179	w	0.0723	26.98400	5.59539	0.2330
3	3.467	VB	0.0688	23.95547	5.29011	0.2069
4	3.687	BV	0.0737	1.14160e4	2479.01758	98.5917
5	4.072	VB	0.0838	46.69102	8.54166	0.4032
Total	s :			1.15791e4	2512.71257	

Figure S80. HPLC of compound 5j

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\007-0701.D Sample Name: AG-21-D

```
_____
Acq. Operator : Dr. Anil Kumar K.S.
                                                  Seq. Line : 7
                                                   Location : Vial 7
Acq. Instrument : Instrument 1
Injection Date : 12/15/2017 11:48:57 AM
                                                          Inj: 1
                                                   Inj Volume : 3.000 μl
               : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\ACN-WATER-90-10.M
: 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Acq. Method
Last changed
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info
                : OSDD
         DAD1 A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\007-0701.D)
   mAU_
                                                  665
   3000-
   2500 -
   2000 -
   1500 -
                                                                                                     NH<sup>t</sup>Bu
   1000 -
                                           3.453
    500 -
                                       038
                                                      506
                                                             33
                                                                                   5j
      0
         DAD1 B. Sig=254.20 Ref=off (ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\007-0701.D)
   mAU_
                                                  8
   3000-
   2500
   2000
   1500
   1000 -
                                                      200
                                            32
                                                             5
    500 -
                                                             ŵ
      0
```


#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	3.038	vv	0.0996	159.76851	23.40314	0.5866
2	3.453	VV	0.0692	812.05127	178.08176	2.9817
3	4.052	BV	0.1172	2.60986e4	3574.22852	95.8305
4	4.506	VB	0.0916	83.07650	13.92503	0.3050
5	5.133	VB	0.0903	80.64246	13.76763	0.2961

Totals: 2.72341e4 3803.40607

				Area		
#	[min]			[mAU*s]	[mAU]	%
1	3.453			135.58652		0.5782
2	3.539	VB	0.0483	19.77046	6.36127	0.0843
3	4.049	BV	0.1089	2.30717e4	3501.33618	98.3828
4	4.506	VB	0.0897	115.86201	19.96015	0.4941
5	5.134	BB	0.0916	108.02787	18.10634	0.4607
Total	s :			2.34510e4	3577.49950	

Figure S81. HPLC of compound 5k

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-1 2017-12-15 10-35-11\004-0401.D Sample Name: AG-21-E

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.835	vv	0.0767	397.71454	78.99175	5.8764
2	5.148	VV	0.0911	6370.28857	1075.61047	94.1236

Totals : 6768.00311 1154.60223

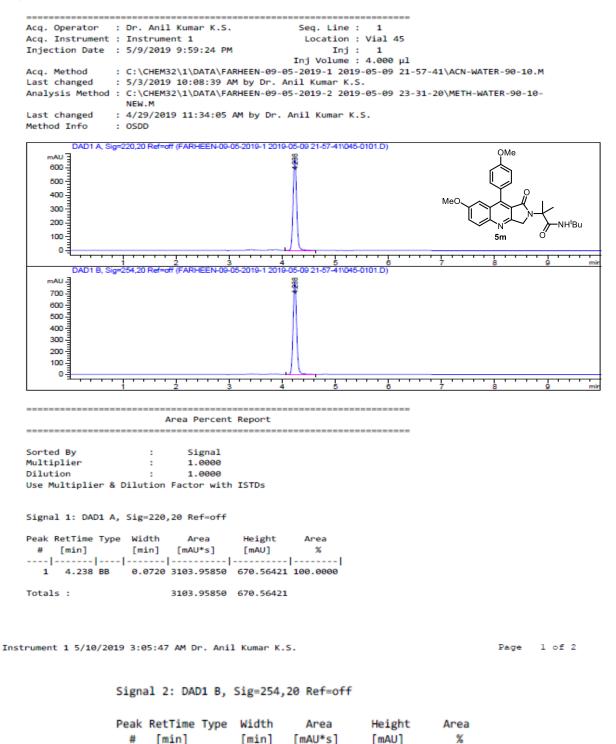
#	[min]		[min]	Area [mAU*s]		%
1	3.835	VV	0.0721	62.74902	13.53850	0.7582
2	5.148	BB	0.0915	8212.81348	1377.84229	99.2418
Total	s :			8275.56250	1391.38078	

Figure S82. HPLC of compound 51

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\015-0701.D Sample Name: AG-18-E

Acq. Operator	: Dr. Anil Kumar K.S. Seq. Line : 7
Acq. Instrument	
Injection Date	: 12/15/2017 2:05:15 PM Inj: 1
	Inj Volume : 3.000 µl
	: C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M
	: 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
	: C:\CHEM32\1\METHODS\ACN-WATER-90-10.M
Last changed	: 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.
Method Info	: OSDD
	Problem and the second of
	: Peak(s) manually integrated ig=220.20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\015-0701.D)
mAU 3	N
2500	
2000	
2000	MeO
1500	
1000	
500	
500	
0-1	
DAD4 B S	1 2 3 4 5 6 7 8 9 min ig=254,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\015-0701.D)
mAUI	g=254,20 Rei=0il (ANIL-R5-15-12-2017-2 2017-12-15 12-51-544015-0701.D) m
3000	<u>\$</u>
2500	
2000	
1500	
1000	
	N
500	4.512
0-1	
	<u>1 2 3 4 5 6 7 8 9 mir</u>

Signal 1: DAD1 A, Sig=220,20 Ref=off

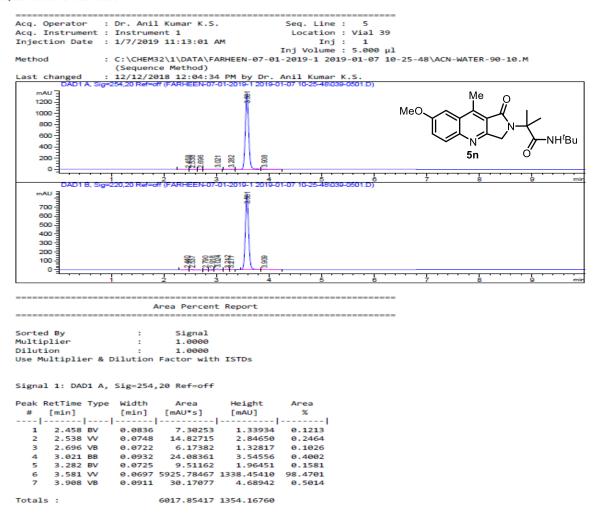

#			[min]		Height [mAU]	
1	4.012 4.512	vv	0.0814		3137.04468 25.69749	
3	5.959	BB	0.1036	162.99409	23.30471	1.0023

Totals : 1.62622e4 3186.04688

	RetTime Type [min]		Area [mAU*s]	Height [mAU]	Area %
1	4.013 VV	0.0917	1.88305e4	3343.33594	99.0521
2	4.512 VB	0.0840	180.20427	33.89356	0.9479
Total	s :		1.90107e4	3377.22950	

Figure S83. HPLC of compound 5m

Data File C:\CHEM32\1\DATA\FARHEEN-09-05-2019-1 2019-05-09 21-57-41\045-0101.D Sample Name: S-019-0009



	-				
1 4.	238 W	0.0720	3719.73022	802.90283	100.0000

Totals : 3719.73022 802.90283

Figure S84. HPLC of compound 5n

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\039-0501.D Sample Name: S-019-0006

Instrument 1 1/7/2019 12:21:48 PM Dr. Anil Kumar K.S.

Page 1 of 2

Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.440	BV	0.0974	14.80971	2.29225	0.3856
2	2.537	VB	0.1279	34.53092	3.53680	0.8991
3	2.790	BV	0.0656	17.40842	4.09395	0.4533
4	2.918	w	0.0774	15.77617	2.81533	0.4108
5	3.024	w	0.0830	44.95138	7.60114	1.1705
6	3.212	w	0.0736	26.98288	5.27958	0.7026
7	3.271	VB	0.0509	12.80687	3.83900	0.3335
8	3.581	BV	0.0689	3655.98633	837.20837	95.1975
9	3.909	VB	0.0964	17.17186	2.49043	0.4471
Total	s :			3840.42453	869.15685	

Figure S85. HPLC of compound 50

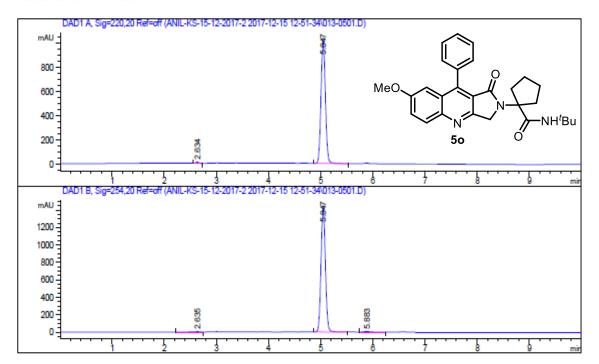
Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\013-0501.D Sample Name: AG-18-F

```
Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 5

Acq. Instrument : Instrument 1 Location : Vial 13

Injection Date : 12/15/2017 1:41:18 PM Inj : 1

Inj Volume : 3.000 µl


Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

Method Info : OSDD
```


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	2.634	VB	0.0706	60.06581	12.38757	0.9960
2	5.047	BV	0.0899	5970.51514	1026.19019	99.0040

Totals : 6030.58094 1038.57775

#			[min]		Height [mAU]	
1	2.635	BB	0.0751	27.41661	5.23576	0.3252
2	5.047	BV	0.0901	8365.23145	1434.04065	99.2327
3	5.883	BB	0.1008	37.26209	5.66331	0.4420

```
Totals : 8429.91014 1444.93972
```

Figure S86. HPLC of compound 5p

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\010-0201.D Sample Name: A9-19-A

Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 2 Acq. Instrument : Instrument 1 Location : Vial 10 Injection Date : 12/15/2017 1:05:27 PM Inj : 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.554	w	0.0810	2280.25098	435.94400	100.0000

Totals : 2280.25098 435.94400

Peak RetTi	me Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 4.5	54 BB	0.0805	3534.63086	681.92010	100.0000

```
Totals : 3534.63086 681.92010
```

Figure S87. HPLC of compound 6a

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\016-0801.D Sample Name: AG-21-A-P

Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 8 Acq. Instrument : Instrument 1 Location : Vial 16 Injection Date : 12/15/2017 2:17:15 PM Inj : 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\WETHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DAD1A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-22017-12-15 12-51-34/016-0901.D) MAU 200 4 150 4 100 70 70 4 100 70 70 70 70 70 70 70 70 70 70 70 70 7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DADIA, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/016-0301.D) Method Info = 0 SDD Method Info = 0 SDD Method Info = 0 SDD Method Info = 0 SDD = 0 $Method Info = 0 SODMethod Info = 0 SDD = 0 Method Info = 0 SOD = 0 Method Info = 0 Method Info =$
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DADI A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/016-0801.D) MAU 2000 1750 1000 1250 1000 750 500
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DADIA, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/016-0801.D) mAU 2000 1 1750 1 1000 1 1250 1 1000 1 750 1 1000 1000 1 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 10
Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DADI A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/018-0801.D)
Method Info : 0SDD DADI A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/016-0901.D)
DAD1 A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34/016-0801.D) mAU 2000 1750 1250 1000 750 500
MAU 2000 1750 1600 1250 1000 750 500
2000 - 1750 - 1500 - 1250 - 1000 - 750 - 500 -
1750 1500 1250 1000 750 500
1500 1 1250 1 1000 1 750 1 500 1
1250- 1000 - 750 - 500 -
250 A 88 8 8 9 6a 6a
DAD1 B, Sig=254,20 Ref=off (ANIL-KS-15-12-2017-12-15 12-51-341016-0901.D) mAU = St
2500 -
2000 -
1500
1000
2 6600 2 4 10 5 4 3 7 5 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5
83 12 19 19 19 19 19 19 19 19 19 19 19 19 19

#	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.685	VB	0.1152	103.02876	11.87425	0.8617
2	2.840	BV	0.0778	72.20421	14.08029	0.6039
3	4.075	VB	0.0975	96.57744	14.52980	0.8078
4	4.692	w	0.0829	1.15376e4	2138.82104	96.4997
5	4.967	VB	0.0989	66.05271	10.01547	0.5525
6	5.434	BV	0.0908	80.64073	13.67817	0.6745

Totals : 1.19561e4 2202.99903

Peak Re	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	2.690	VB .	0.0519	27.11286	7.93599	0.1541
2	3.389	BV	0.0654	24.60736	5.81327	0.1399
3	4.073	BB	0.0933	59.43724	9.45979	0.3378
4	4.418	W	0.0830	38.43474	7.11383	0.2185
5	4.692	w	0.0901	1.71339e4	3022.39673	97.3911
6	4.970	VB	0.0948	83.26785	12.98086	0.4733
7	5.435	BV	0.0912	132.75661	22.39119	0.7546
8	7.300	BV	0.1195	41.14302	5.36498	0.2339
9	8.389	BV	0.1298	52.21698	6.23127	0.2968
Totals	:			1.75929e4	3099.68791	

Figure S88. HPLC of compound 6b

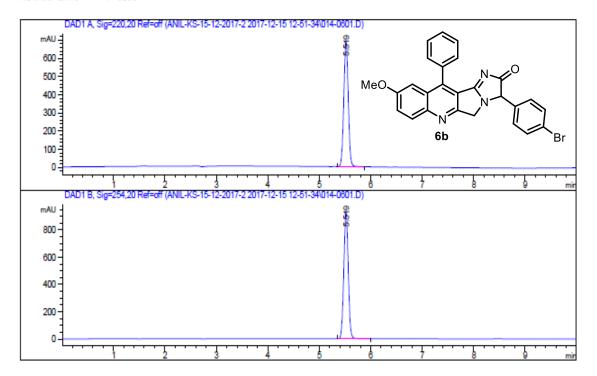
Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\014-0601.D Sample Name: AG-16-B-P

```
Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 6

Acq. Instrument : Instrument 1 Location : Vial 14

Injection Date : 12/15/2017 1:53:16 PM Inj : 1

Inj Volume : 3.000 µl


Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

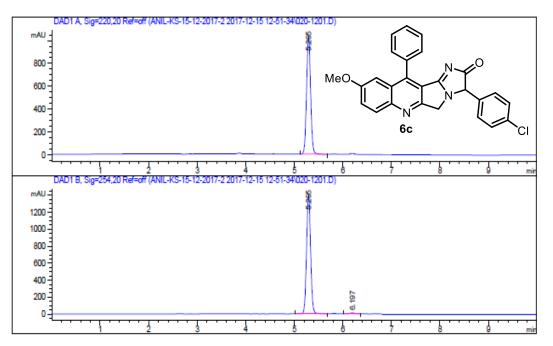
Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M

Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S.

Method Info : OSDD
```


Totals : 4149.05469 692.43347

Signal 2: DAD1 B, Sig=254,20 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.519	w	0.0920	5610.87549	935.17145	100.0000

Totals : 5610.87549 935.17145

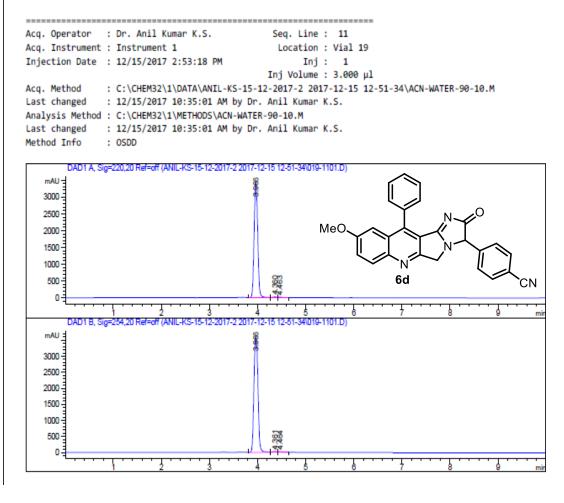
Figure S89. HPLC of compound 6c

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\020-1201.D Sample Name: AG-18-B-P

Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 12 Acq. Instrument : Instrument 1 Location : Vial 20 Injection Date : 12/15/2017 3:05:20 PM Inj : 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.295	VB	0.0898	5982.72314	1029.17029	100.0000

Totals : 5982.72314 1029.17029


Signal 2: DAD1 B, Sig=254,20 Ref=off

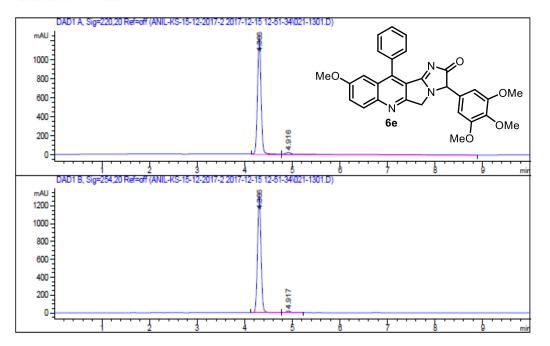
Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	5.295	BV	0.0900	8163.41992	1400.07507	99.0790
2	6.197	BB	0.1009	75.88558	11.81718	0.9210

Totals : 8239.30550 1411.89225

Figure S90. HPLC of compound 6d

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\019-1101.D Sample Name: AG-18-C-P

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3,966	BB	0.0849	1.78302e4	3417.97974	99.1765
2	4.360	BV	0.0777	89.34116	17.44733	0.4969
3	4.463	VB	0.0752	58.70437	11.97353	0.3265


Totals : 1.79783e4 3447.40060

#	RetTime [min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	3.966	BB	0.0958	2.08845e4	3593.79395	99.0360
2	4.361	BV	0.0770	113.42193	22.41887	0.5379
3	4.464	VB	0.0769	89.86758	17.79210	0.4262
Totals	5 :			2.10878e4	3634.00492	

Figure S91. HPLC of compound 6e

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\021-1301.D Sample Name: AG-18-A-P

Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 13 Acq. Instrument : Instrument 1 Location : Vial 21 Injection Date : 12/15/2017 3:17:17 PM Inj : 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.306	w	0.0817	6547.84961	1237.75269	90.0686
2	4.916	VB	0.3824	721.99658	23.37426	9.9314

Totals : 7269.84619 1261.12694

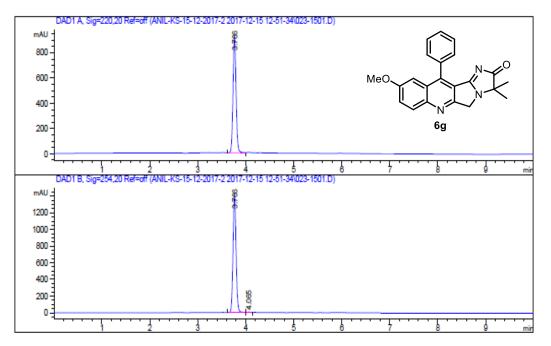
Signal 2: DAD1 B, Sig=254,20 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
1	4.306	BV	0.0801	6823.17090	1324.72534	98.2684
2	4.917	w	0.0901	120.22906	20.59347	1.7316

Totals : 6943.39996 1345.31881

Figure S92. HPLC of compound 6f

mpower2		SAIF_CDRI_GLC and HPLC LAB, LUCKNOW	
	SAMPLE	INFORMATION	
Sample Name: Sample Type: Vial: Injection #: Injection Volume: Run Time: Date Acquired: Date Processed:	AG-21-E-P Unknown 1 12 10.00 ul 30.0 Minutes 7/1/2020 4:00:45 PM IST 7/3/2020 2:35:18 PM IST	Acquired By: Acq. Method Set: Processing Method: Channel Name: Proc. Chnl. Descr.:	System NEW GENRAL HPLC AG_21_E_P 254.0nm PDA 254.0 nm


Auto-Scaled Chromatogram 0.60-0.55 292.12 0.50 0.45 В 0.40-6f 0.35 ₹ 0.30 0.25 0.20 0.15 -22.452 0.10 0.05 0.00- $\diamond \Sigma$ 18.00 20.00 22.00 24.00 26.00 28.00 30.00 8.00 10.00 0.00 2.00 4.00 6.00 12.00 14.00 16.00 Minutes Peak Results

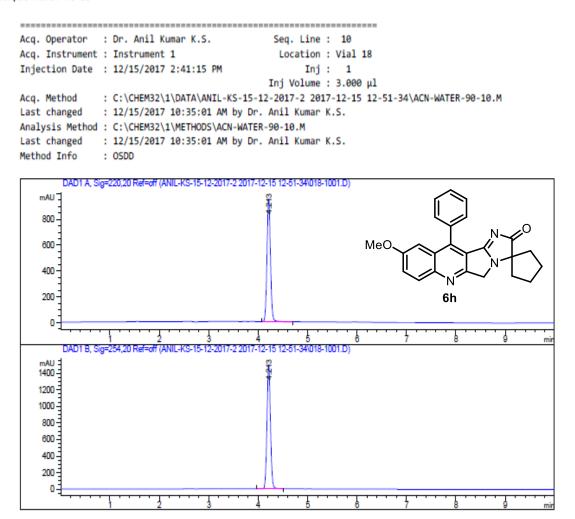
	Peak Results									
	Name	RT	Area	Height	% Area					
1		21.262	11357125	572057	93.24					
2		22.452	823921	46776	6.76					

Figure S93. HPLC of compound 6g

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\023-1501.D Sample Name: AG-18-E-P

Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 15 Acq. Instrument : Instrument 1 Location : Vial 23 Injection Date : 12/15/2017 3:41:13 PM Inj : 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.766	BV	0.0679	4122.53613	927.59344	100.0000


Totals : 4122.53613 927.59344

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.766	BV	0.0680	6352.28467	1425.41724	99.4520
2	4.065	w	0.0760	35.00503	6.80146	0.5480

```
Totals : 6387.28970 1432.21870
```

Figure S94. HPLC of compound 6h

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\018-1001.D Sample Name: AG-18-F-P

	RetTime			Area	Height	Area
				[mAU*s]	[mAU]	
1	4.213	w	0.0774	4691.17920	954.21094	100.0000

Totals : 4691.17920 954.21094

Signal 2: DAD1 B, Sig=254,20 Ref=off Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % ----|-----|----|-----|------|------| 1 4.213 BV 0.0771 7372.19385 1505.42444 100.0000 Totals : 7372.19385 1505.42444

Figure S95. HPLC of compound 6i

Data File C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\017-0901.D Sample Name: AG-19-A-P

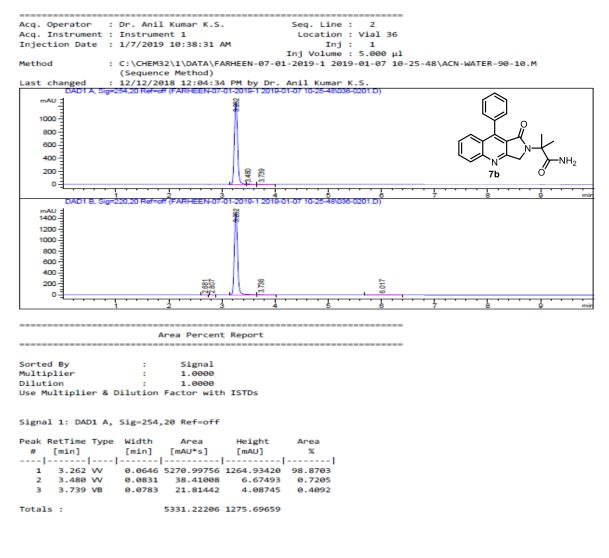
Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 9 Location : Vial 17 Acq. Instrument : Instrument 1 Injection Date : 12/15/2017 2:29:15 PM Inj: 1 Inj Volume : 3.000 µl Acq. Method : C:\CHEM32\1\DATA\ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Analysis Method : C:\CHEM32\1\METHODS\ACN-WATER-90-10.M Last changed : 12/15/2017 10:35:01 AM by Dr. Anil Kumar K.S. Method Info : OSDD DAD1 A, Sig=220,20 Ref=off (ANIL-KS-15-12-2017-2 2017-12-15 12-51-34\017-0901.D) mAU 700· 600 -MeO. 500 · 400 -300 200 6i 5,979 6.935 100 -0 4 ł 12-2017-2 2017-12-15 12-51-34\017-0901.D DAD1 B S mAU 1 1200 -1000 -800-600 -400 -200 g 0.

Peak F	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.549	w	0.0830	4384.64551	837.99878	91.5577
2	5.979	BV	0.1083	86.36610	12.55259	1.8034
3	6.935	VB	0.4269	317.92987	11.48540	6.6388
Totals	: :			4788.94147	862.03677	

			Width [min]	Area [mAU*s]	Height [mAU]	Area %
				[IIIA0.2]		
1	2.495	BV	0.0704	28.29429	5.85662	0.4061
2	2.597	w	0.0758	28.55070	5.38616	0.4098
3	4.549	BV	0.0828	6801.49365	1304.23962	97.6230
4	5.982	BB	0.1041	108.76447	16.24367	1.5611
Totals	:			6967.10310	1331.72608	

Figure S96. HPLC of compound 7a

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\041-0701.D Sample Name: S-019-0008


Acq. Operator : Dr. Anil Kumar K.S. Seq. Line : 7
Acq. Instrument : Instrument 1 Location : Vial 41
Injection Date : 1/7/2019 11:36:01 AM Inj : 1
Inj Volume : 5.000 µl
Method : C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\ACN-WATER-90-10.M
(Sequence Method)
Last changed : 12/12/2018 12:04:34 PM by Dr. Anil Kumar K.S.
Additional Info : Peak(s) manually integrated
DAD1 A, Sig=254,20 Ref=off (FARHEEN-07-01-2019-1 2019-01-07 10-25-48/041-0701.D)
\downarrow 400 $\frac{1}{2}$
200

DAD1 B, Sig=220,20 Ref=off (FARHEEN-07-01-2019-1 2019-01-07 10-25-48/041-0701.D) / 8 9 mr
mAU -
3 8
- aso -
- 009
400
200
L 1 2 3 4 5 6 7 8 9 min
Area Percent Report
Control Du Clanol
Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs
Signal 1: DAD1 A, Sig=254,20 Ref=off
Deals Destring Type Width Anna Weight Anna
Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %
[min] [mAU*s] [mAU] %
1 3.311 W 0.0736 228.13037 46.23408 3.2276
2 3.623 VB 0.0714 6840.02051 1495.67200 96.7724
2 3.023 VD 0.0714 0040.02031 1433.07200 30.7724
Totals : 7068.15088 1541.90608

Instrument 1 1/7/2019 12:23:58 PM Dr. Anil Kumar K.S.

Page 1 of 2

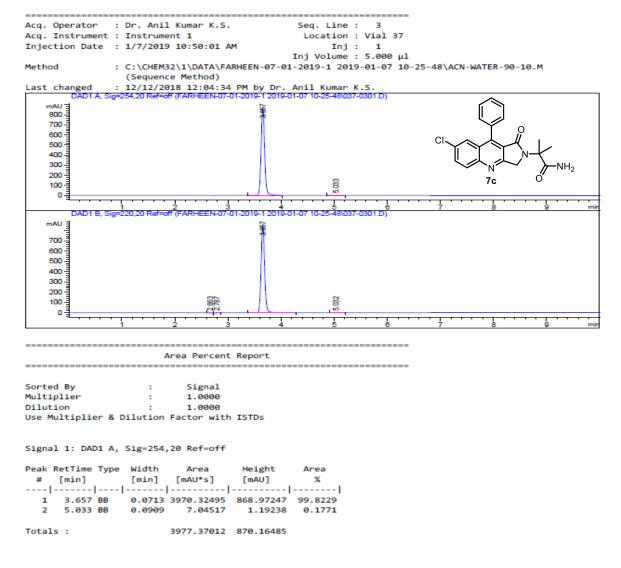
Figure S97. HPLC of compound 7b

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\036-0201.D Sample Name: S-019-0003

Instrument 1 1/7/2019 12:15:50 PM Dr. Anil Kumar K.S.

Page 1 of 2

Signal 2: DAD1 B, Sig=220,20 Ref=off

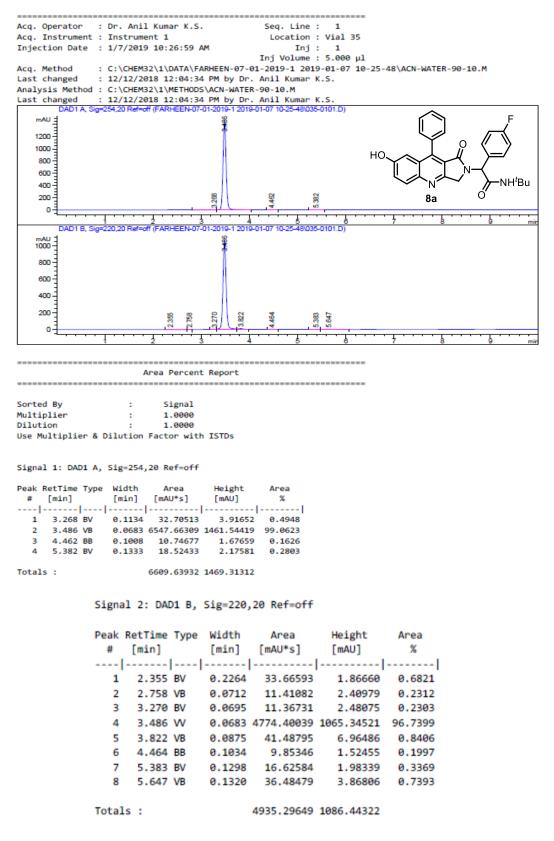

#	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.681	BB	0.0759	7.09305	1.42895	0.1128
2	2.807	BB	0.0614	9.14099	2.34993	0.1453
3	3.262	w	0.0641	6240.91650	1513.67029	99.2294
4	3.736	VB	0.0877	22.84978	3.82422	0.3633
5	6.017	BB	0.1322	9.38072	1.03008	0.1492

Totals :

6289.38104 1522.30347

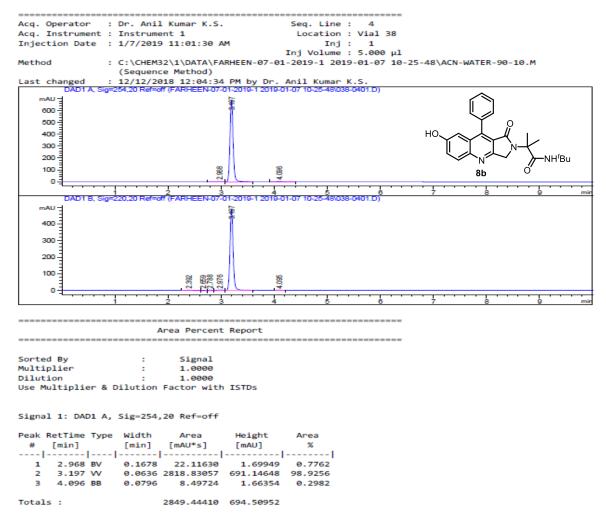
Figure S98. HPLC of compound 7c

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\037-0301.D Sample Name: S-019-0004


Instrument 1 1/7/2019 12:20:43 PM Dr. Anil Kumar K.S.

Page 1 of 2

Peak I #	RetTime [min]		Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	2.663	BB	0.0725	6.88353	1.47320	0.1762
2	2.787	BB	0.0591	11.17208	3.02201	0.2860
3	3.657	BB	0.0714	3881.49805	848.52203	99.3683
4	5.032	BB	0.0893	6.61964	1.14768	0.1695
Total	s :			3906.17330	854.16492	


Figure S99. HPLC of compound 8a

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\035-0101.D Sample Name: S-019-0002

Figure S100. HPLC of compound 8b

Data File C:\CHEM32\1\DATA\FARHEEN-07-01-2019-1 2019-01-07 10-25-48\038-0401.D Sample Name: S-019-0005

Instrument 1 1/7/2019 12:21:16 PM Dr. Anil Kumar K.S.

Page 1 of 2

Peak R #	etTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-				
1	2.392	BV	0.2123	25.19151	1.48190	1.1881
2	2.659	VB	0.0825	13.54921	2.53064	0.6390
3	2.788	BV	0.0791	23.62584	4.36741	1.1142
4	2.976	w	0.1197	34.83565	3.92096	1.6429
5	3.197	VB	0.0638	2017.82727	492.11786	95.1629
6	4.095	BB	0.0741	5.36289	1.15544	0.2529
Totals	:			2120.39238	505.57421	