Evaluation of the effect of cell penetrating peptide (TAT) towards tailoring the targeting efficacy and tumor uptake of porphyrin

Mohini Guleria^{a,b}, Shishu K. Suman^{a,b}, Naveen Kumar^{a,b}, Amit K. Sharma^{a,b},

JeyachitraAmirdhanayagam^a, Haladhar D. Sarma^c, DrishtySatpati^{a,b}, Tapas Das^{*,a,b}

^aRadiopharmaceuticals Division, Bhabha Atomic Research Centre,

Trombay, Mumbai - 400085, India

^bHomi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India

^cRadiation Biology and Health Sciences Division, Bhabha Atomic Research Centre,

Sr.No.	Title	Page no.
1	Fig. S1: FT-IR spectrum of compound 1	2
2	Fig. S2: Mass spectrum (ESI-MS) of compound 1	2
3	Fig. S3: FT-IR spectrum of compound 2	3
4	Fig. S4: Mass spectrum (MALDI-TOF) of compound 2	3
5	Fig. S5: Mass spectrum (MALDI-TOF) of compound 3	4
6	Fig. S6: Images of well plate showcasing the decline in	5
	intensity upon light exposure for compound 2 and 3 at two	
	different concentrations viz. 0.5 and 1 μ M in A549 cells	
7	Fig. S7: Fluorescence images: (a) of compound 2	6
	(UTriCOOHPhOH) and (b) compound 3	
	(UTriCOOHPhO-TAT), acquired at 1 µM concentration in	
	A549 cell lines	
8	Fig. S8: Absorption spectrum and emission spectra (inset:	7
	$\lambda_{\text{excitation}} = 423 \text{ nm}$) of compound 2	
9	Fig. S9: Absorption and emission spectra (inset: $\lambda_{excitation}$ =	7
	422 nm) of compound 3	
10	Fig. S10: UV-Vis spectra of (a) UTriCOOHPhOH and, (b)	8
	UTriCOOHPhO-TAT, respectively (red color) overlaid	
	with their respective natGa-complexes (black color)	
	exhibiting the reduction in number of Q-bands upon metal	
	complexation in the porphyrin core	

Trombay, Mumbai - 400085, India

Fig. S1: FT-IR spectrum of compound 1

Figure S3: FT-IR spectrum of compound 2

Figure S4: Mass spectrum (MALDI-TOF) of compound 2

Figure S5: Mass spectrum (MALDI-TOF) of compound 3

UTriCOOHPhOH

UTriCOOHPhO-TAT

Figure S6: Images of well plate showcasing the decline in intensity (dark grey to light grey) upon light exposure for compound 2 and 3 in A549 cells, at two different concentrations

viz. 0.5 and 1 μ M.

Figure S7: Fluorescence images: (a) of compound 2 (UTriCOOHPhOH) and (b) compound 3 (UTriCOOHPhO-TAT),acquired at 1 µM concentration in A549 cell lines

Figure S8: Absorption spectrum and emission spectra (inset: $\lambda_{excitation}$ = 423 nm) of compound 2

Figure S9: Absorption and emission spectra (inset: $\lambda_{excitation}$ = 422 nm) of compound 3

Figure S10: UV-Vis spectra of (a) UTriCOOHPhOH and, (b) UTriCOOHPhO-TAT, respectively (red color) overlaid with their respective ^{nat}Ga-complexes (black color) exhibiting the reduction in number of Q-bands upon metal complexation in the porphyrin

core