Supporting Information

Novel Etodolac Derivatives as Eukaryotic Elongation Factor 2 Kinase (eEF2K) Inhibitors for Targeted Cancer Therapy

Ferah Comert Onder^{a-c*}, Pinar Siyah^d, Serdar Durdagi^{d*}, Mehmet Ay^c, Bulent Ozpolat^{b,e*}

^aDepartment of Medical Biology, Çanakkale Onsekiz Mart University, Faculty of Medicine, 17020 Çanakkale, Turkey ^bDepartment of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA ^cDepartment of Chemistry, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Faculty of Science and Arts, 17020 Çanakkale, Turkey ^dComputational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey ^eCenter for RNA Interference and Non-Coding RNAs, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA

Short title: Etodolac Derivatives as Eukaryotic Elongation Factor 2 Kinase (eEF2K) Inhibitors

Corresponding authors:

Ferah Comert Onder, Department of Medical Biology, Çanakkale Onsekiz Mart University, Faculty of Medicine, 17020 Canakkale, Turkey. Email: <u>ferahcomertonder@comu.edu.tr (FCO)</u>

Serdar Durdagi, Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey Email: serdar.durdagi@med.bau.edu.tr (SD)

Bulent Ozpolat, Department of Experimental Therapeutics, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA Email: <u>bozpolat@mdanderson.org (BO)</u>

Figure S1. Alignment of 3D structures of alphafold (green) and homology model (blue) structure used in this study (RMSD: 1.5 Å).

Figure S2. Developed model by combined Alphafold and Rosetta approaches. The model that has the lowest total energy (model no #41) was used. Ramachandran's plot showed that all the residues at the allowed region. Verify3D and PROCHECK protein validation tools validated the used model.

Figure S3. Structural similarity comparison of EC1 (left) and EC7 (right) with FDA approved compounds.

Name	EC1	EC2	EC3	EC4	EC5	EC6	EC7
AMES (TP) ⁽¹⁾	0.6	0.46	0.57	0.51	0.4	0.5	0.38
Anemia (TP) ⁽²⁾	0.31	0.19	0.22	0.3	0.22	0.34	0.21
Carcinogenicity (TP) ⁽³⁾	0.06	0.08	0.06	0.04	0.07	0.04	0.05
Carcinogenicity Mouse Female (TP) ⁽⁴⁾	0.12	0.18	0.12	0.04	0.1	0.04	0.12
Carcinogenicity Mouse Male (TP) ⁽⁵⁾	0.1	0.12	0.1	0.05	0.11	0.05	0.14
Carcinogenicity Rat Female (TP)	0.06	0.13	0.06	0.07	0.16	0.07	0.19
Carcinogenicity Rat Male (TP) ⁽⁷⁾	0.07	0.19	0.07	0.05	0.16	0.05	0.16
Cardiotoxicity (TP) ⁽⁸⁾	0.33	0.18	0.33	0.31	0.16	0.31	0.3
Cytotoxicity model, -log GI50 (M) (TP)	5.9	5.98	5.9	5.64	5.61	5.6	5.44
Epididymis toxicity (TP) ⁽¹⁰⁾	0.23	0.23	0.23	0.15	0.15	0.15	0.19
Genotoxicity (TP) ⁽¹¹⁾	0.31	0.28	0.31	0.4	0.48	0.46	0.38
Hepatotoxicity (TP) ⁽¹²⁾	0.14	0.19	0.13	0.16	0.19	0.15	0.15
Kidney Necrosis (TP) ⁽¹³⁾	0.04	0.11	0.04	0.04	0.1	0.04	0.07
Kidney Weight Gain (TP) ⁽¹⁴⁾	0.04	0.04	0.04	0.04	0.06	0.04	0.06

 Table S1. Toxicity prediction analysis of the synthesized compounds.

Liver Cholestasis (TP)	0.15	0.2	0.15	0.5	0.52	0.5	0.43
Liver Lipid Accumulation (TP) ⁽¹⁶⁾	0.15	0.16	0.15	0.13	0.13	0.13	0.13
Liver Necrosis (TP) ⁽¹⁷⁾	0.18	0.16	0.18	0.15	0.16	0.15	0.16
Liver Weight Gain (TP) ⁽¹⁸⁾	0.18	0.18	0.16	0.2	0.22	0.2	0.18
MRTD (TP) ⁽¹⁹⁾	0.06	0.16	0.06	0.0	0.08	0.08	0.05
Nasal pathology (TP) ⁽²⁰⁾	0.19	0.23	0.19	0.18	0.31	0.18	0.35
Nephron Injury (TP) ⁽²¹⁾	0.17	0.1	0.17	0.21	0.21	0.21	0.23
Nephrotoxicity (TP) ⁽²²⁾	0.07	0.08	0.07	0.1	0.08	0.1	0.06
Neurotoxicity (TP) ⁽²³⁾	0.23	0.38	0.27	0.3	0.39	0.3	0.35
Pulmonary toxicity (TP) ⁽²⁴⁾	0.07	0.08	0.07	0.07	0.08	0.07	0.14
SkinSens, EC3 (TP) ⁽²⁵⁾	62.11	66.84	52.7	45.62	44.24	45.98	44.71
Testicular toxicity (TP) ⁽²⁶⁾	0.11	0.09	0.11	0.13	0.13	0.13	0.17

1. Potential to be mutagenic (AMES positive), range from 0 to 1. A value of 1 is AMES positive (mutagenic), and a value of 0 is AMES negative (non-mutagenic). Cutoff is 0.5. Values close to zero are preferable. The AMES assay is based upon the reversion of mutations in the histidine operon in the bacterium Salmonella enterica sv Typhimurium.

2. Potential for causing anemia. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing anemia in vivo. Model organisms: human. Model description: Training set N=324, Test set N=51, Sensitivity= 0.82, Specificity=0.90, Accuracy=0.86, MCC=0.72.

3. Potential for inducing carcinogenicity in rats and mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing carcinogenicity in vivo. Model organisms: mouse, rat. Model description: Training set N=1210, Test set N=185, Sensitivity= 0.96, Specificity=0.90, Accuracy=0.93, MCC=0.86.

4. Potential for inducing carcinogenicity in female mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing carcinogenicity in vivo. Model organisms: female mice. Model description: Training set N=640, Test set N=94, Sensitivity= 0.90, Specificity=0.93, Accuracy=0.92, MCC=0.83.

5. Potential for inducing carcinogenicity in male mice. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing carcinogenicity in vivo. Model organisms: mouse male. Model description: Training set N=584, Test set N=93, Sensitivity= 0.91, Specificity=0.88, Accuracy=0.89, MCC=0.78.

6. Potential for inducing carcinogenicity in female rats. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing carcinogenicity in vivo. Model organisms: female rat. Model description: Training set N=667, Test set N=120, Sensitivity= 0.90, Specificity=0.96, Accuracy=0.93, MCC=0.86.

7. Potential for inducing carcinogenicity in male rats. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing carcinogenicity in vivo. Model organisms: male rat. Model description: Training set N=715, Test set N=117, Sensitivity= 0.92, Specificity=0.88, Accuracy=0.90, MCC=0.79.

8. Potential for inducing cardiotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing cardiotoxicity in vivo. Model organisms: mouse, rat, human. Model description: Training set N=143, Test set N=30, Sensitivity= 0.80, Specificity=1.00, Accuracy=0.90, MCC=0.82.

9. Growth inhibition of MCF7 cell line (human caucasian breast adenocarcinoma), pGI50. Cutoff is 6. Values from 6 to 8 correspond to a toxic metabolite, values less than 6 are preferable, values less than 3 are more preferable and less toxic. Model description: N=1474, R2=0.9, RMSE=0.05.

10. Potential for inducing epididymis toxicity. Training set consists of chemicals and drugs causing epididymis toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=252, Test set N=42, Sensitivity= 0.90, Specificity=0.86, Accuracy=0.88, MCC=0.76.

11. Potential for inducing genotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing genotoxicity in vivo. Model organisms: mouse, rat. Model description: Training set N=372, Test set N=86, Sensitivity= 0.75, Specificity=0.84, Accuracy=0.79, MCC=0.59.

12. Potential for inducing hepatotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing hepatotoxicity in vivo. Model organisms: mouse, rat, human. Model description: Training set N=1380, Test set N=231, Sensitivity= 0.73, Specificity=0.88, Accuracy=0.81, MCC=0.62.

13. Potential for inducing kidney necrosis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing renal necrosis in vivo. Model organisms: mouse, rat, human. Model description: Training set N=221, Test set N=42, Sensitivity= 0.96, Specificity=1.00, Accuracy=0.98, MCC=0.95.

14. Potential for inducing kidney weight gain. Cutoff is 0.5. The values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing kidney weight gain in vivo. Model organisms: mouse, rat. Model description: Training set N=240, Test set N=49, Sensitivity= 0.95, Specificity=1.00, Accuracy=0.98, MCC=0.96.

15. Potential for inducing liver cholestasis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing cholestasis in vivo. Model organisms: mouse, rat, human. Model description: Training set N=218, Test set N=35, Sensitivity= 0.79, Specificity=0.67, Accuracy=0.74, MCC=0.46.

16. Potential for inducing liver lipid accumulation. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing lipid accumulation in vivo. Model organisms: mouse, rat, human. Model description: Training set N=172, Test set N=28, Sensitivity= 0.80, Specificity=0.85, Accuracy=0.82, MCC=0.64.

17. Potential for inducing liver necrosis. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing hepatic necrosis in vivo. Model organisms: mouse, rat, human. Model description: Training set N=300, Test set N=57, Sensitivity= 0.91, Specificity=0.91, Accuracy=0.91, MCC=0.82.

18. Potential for inducing liver weight gain. Cutoff is 0.5. Values higher than 0.5 indicate potential liver weight-changing compounds. Training set consists of chemicals and drugs causing liver weight gain in vivo. Model organisms: mouse, rat. Model description: Training set N=292, Test set N=52, Sensitivity= 1.00, Specificity=1.00, Accuracy=1.00, MCC=1.00.

19. Maximum Recommended Therapeutic Dose, log mg/kg-bm/day, range is from -5 to 3. Cutoff is 0.5. Chemicals with high log MRTDs can be classified as mildly toxic compounds, chemicals with low log MRTDs as highly toxic compounds. Model description: N=1209, R2= 0.86, RMSE=0.42.

20. Potential for causing nasal pathology. Training set consists of chemicals and drugs causing nasal pathology in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=246, Test set N=47, Sensitivity= 1.00, Specificity=0.93, Accuracy=0.96, MCC=0.92.

21. Potential for inducing nephron injury. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing nephron injury in vivo. Model organisms: mouse, rat, human. Model description: Training set N=598, Test set N=109, Sensitivity= 0.91, Specificity=1.00, Accuracy=0.96, MCC=0.93.

22. Potential for inducing nephrotoxicity. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Training set consists of chemicals and drugs causing nephrotoxicity in vivo. Model organisms: mouse, rat, human. Model description: Training set N=847, Test set N=154, Sensitivity= 0.90, Specificity=0.84, Accuracy=0.87, MCC=0.74.

23. Potential for inducing neurotoxicity. Training set consists of chemicals and drugs causing neurotoxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=175, Test set N=34, Sensitivity= 0.94, Specificity=0.94, Accuracy=0.94, MCC=0.88.

24. Potential for inducing pulmonary toxicity. Training set consists of chemicals and drugs causing pulmonary toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=482, Test set N=87, Sensitivity= 0.89, Specificity=0.88, Accuracy=0.89, MCC=0.77.

25. Skin sensitization potential expressed as effective concentration 3, EC3 %. Values higher than 10 indicate weak and moderate sensitizers. Model description: N=89, R2=0.67, RMSE=22.56.

26. It consists of chemicals and drugs causing testicular toxicity in vivo. Model organisms: mouse, rat, human. Cutoff is 0.5. Values higher than 0.5 indicate potentially toxic compounds. Model description: Training set N=439, Test set N=88, Sensitivity= 0.81, Specificity=0.85, Accuracy=0.83, MCC=0.66. a. Potential activity against cancer. Cutoff is 0.5. Values higher than 0.5 indicate potentially active compounds. Training set consists of approved drugs. Model description: Training set N=886, Test set N=167, Sensitivity= 0.89, Specificity=0.83, Accuracy=0.86, MCC=0.72.

Spectroscopic analysis

Figure S5. ¹H NMR spectra of compound EC1

Figure S6. ¹³C NMR spectra of compound EC1

Figure S7. LC-MS/MS spectra of compound EC1

Figure S8. FT-IR spectra of compound EC2

Figure S9. ¹H NMR spectra of compound EC2

Figure S10. ¹³C NMR spectra of compound EC2

Figure S12. FT-IR spectra of compound EC3

Figure S13. ¹H NMR spectra of compound EC3

Figure S14. ¹³C NMR spectra of compound EC3

Figure S15. LC-MS/MS spectra of compound EC3

Figure S17. ¹H NMR spectra of compound EC4

Figure S18. ¹³C NMR spectra of compound EC4

Figure S19. LC-MS/MS spectra of compound EC4

Figure S20. FT-IR spectra of compound EC5

Figure S21. ¹H NMR spectra of compound EC5

Figure S23. LC-MS/MS spectra of compound EC5

Figure S24. FT-IR spectra of compound EC6

Figure S25. ¹H NMR spectra of compound EC6

Figure S27. LC-MS/MS spectra of compound EC6

Figure S28. LC-MS/MS spectra of compound EC7

Figure S29. ¹H NMR spectra of compound EC7

Figure S31. LC-MS/MS spectra of compound EC7

1	PDA	Multi	1/224nm	4nm
---	-----	-------	---------	-----

Anm Anm	r cak lable				
Ret. Time	Area	Height	Area %	Height %	
2.198	11535	1047	0.043	2.234	
3.460	27364	3754	0.102	8.008	
3.560	19328	2992	0.072	6.381	
8.017	15645	1016	0.058	2.167	
12.395	22310	1093	0.083	2.332	
36.625	26701159	36978	99.641	78.878	
	26797340	46880	100.000	100.000	
	4nm 4nm Ret. Time 2.198 3.460 3.560 8.017 12.395 36.625	Anm 4nm Area Area Ret. Time Area 11535 2.198 11535 3 3.460 27364 3 3.560 19328 3 8.017 15645 3 12.395 22310 3 36.625 26701159 2	Anm 4nm Area Height Ret. Time Area Height 2.198 11535 1047 3.460 27364 3754 3.560 19328 2992 8.017 15645 1016 12.395 22310 1093 36.625 26701159 36978 26797340 46880	Anm 4nm Area Height Area % 2.198 11535 1047 0.043 3.460 27364 3754 0.102 3.560 19328 2992 0.072 8.017 15645 1016 0.058 12.395 22310 1093 0.083 36.625 26791340 46880 100.000	

HPLC Chromatogram of EC2

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 254nm 4nm								
Peak#	Ret. Time	Area	Height	Area %	Height %			
					-			
1	3.937	6980793	431544	100.000	100.000			
Total		6980793	431544	100.000	100.000			

PeakTable

1 PDA Multi 1/224nm 4nn	ulti 1/224nm 4nm
-------------------------	------------------

4nm 4nm				
Ret. Time	Area	Height	Area %	Height %
2.220	20857	1860	0.035	2.230
3.456	40665	5207	0.069	6.24
3.564	39393	4915	0.067	5.89
6.530	11896	783	0.020	0.93
6.869	14145	871	0.024	1.044
7.193	35743	1864	0.061	2.23
8.021	16274	1036	0.028	1.242
10.431	40238	1089	0.068	1.30
12.509	49262	2071	0.084	2.482
31.041	58585534	63724	99.544	76.39
	58854007	83419	100.000	100.00
	24nm 4nm Ret. Time 2.220 3.456 3.564 6.530 6.869 7.193 8.021 10.431 12.509 31.041	Anm 4nm Ret. Time Area 2.220 20857 3.456 40665 3.564 39393 6.530 11896 6.869 14145 7.193 35743 8.021 16274 10.431 40238 12.509 49262 31.041 58585534	Arma Height Ret. Time Area Height 2.220 20857 1860 3.456 40665 5207 3.564 39393 4915 6.530 11896 783 6.869 14145 871 7.193 35743 1864 8.021 16274 1036 10.431 40238 1089 12.509 49262 2071 31.041 58854007 83419	Anm 4nm Area Height Area % 2.220 20857 1860 0.035 3.456 40665 5207 0.069 3.564 39393 4915 0.067 6.530 11896 783 0.020 6.869 14145 871 0.024 7.193 35743 1864 0.061 8.021 16274 1036 0.028 10.431 40238 1089 0.068 12.509 49262 2071 0.084 31.041 58585534 63724 99.544

PeakTable

PDA Ch1 2	54nm 4nm		_		
Peak#	Ret. Time	Area	Height	Area %	Height %
			-		-
1	4.175	6508082	668564	100.000	100.000
Total		6508082	668564	100.000	100.000

HPLC Chromatogram of EC5

1 PDA Multi 1/254nm 4nm

Peal	e 1	a	h	ρ
r ca	N 1	ιa	U,	

1 Cak Table						
PDA Ch1 2	54nm 4nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	3.113	291743	20914	2.448	1.660	
2	3.328	119529	12604	1.003	1.001	
3	3.722	11505630	1226156	96.549	97.339	
Total		11916902	1259674	100.000	100.000	

1 PDA Multi 1/254nm 4nm

PeakTable

PDA Ch1 2	54nm 4nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	3.167	275342	24492	0.997	0.731			
2	3.423	329188	17529	1.192	0.523			
3	3.937	27004201	3306659	97.810	98.745			
Total		27608732	3348680	100.000	100.000			

1 PDA Multi 1/254nm 4nm

PeakTable

		1 cultitudie				
PDA Ch1 254nm 4nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %
				-		Ŭ
	1	4.755	2781252	81307	100.000	100.000
	Total		2781252	81307	100.000	100.000