Electronic Supplementary Material (ESI) for RSC Medicinal Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Piperazine tethered bergenin-heterocyclic hybrids: Design, Synthesis, anticancer activity and molecular docking studies

Banoth Venkateswara Rao, ^{a,b} P. Pavan Kumar, ^a V. Ramalingam, ^{a,b} G. Karthik^c, A. Sai Balaji ^{b,c} and K. Suresh Babu ^{a,b*}

^aCentre for Natural Products & Traditional Knowledge, CSIR-Indian Institute of Chemical

Technology, Hyderabad 500 007, India

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201002, India ^cApplied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India

1. Materials and Methods

1.1. Plant materials

The fruits of *Mallotus phillippensis* were collected from Eastern Ghats, AP, India and were authenticated by Dr. K. Madhava Chetty, and a voucher specimen (SVU-MP-0659) was deposited in the herbarium of Department of Botany, Sri Venkateswara University, Tirupati, Andhra Pradesh, India.

1.2. Extraction and isolation of Bergenin

The dried fruits of *M. philippensis* were powdered in a pulvarizer (7 kg) and extracted with methanol at room temperature for 72 h. The resulting extract (180 g) was subjected to column chromatography (using 60–120 silica mesh) eluted successively with CHCl₃/MeOH (9:1), CHCl₃/MeOH (4:1), to give four fractions F1-F4. Fraction F2 was further purified using column chromatography eluting with CHCl₃/MeOH (92:8) to give bergenin (5) as a white amorphous powder which was identified on the basis of its NMR and mass spectral data.

1.2.1. (2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (5):

White amorphous Powder; IR (neat): v_{max} 3401, 3289, 2968, 2912, 1737, 1656, 1133 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 9.78 (1H, s), 8.45 (1H, s), 6.99 (1H, s), 5.65 (1H, d, J = 3.9 Hz), 5.44 (1H, s), 4.98 (1H, d, J = 10.5 Hz), 4.93 (1H, s), 4.00 (1H, t, J = 9.9 Hz), 3.83 (1H, dd, J = 17.3, 6.7 Hz), 3.77 (3H, s), 3.66 (1H, dd, J = 11.9, 5.3 Hz), 3.60-3.52 (1H, m), 3.20 (1H, dd, J = 17.1, 8.3 Hz); ¹³C NMR (125 MHz, DMSO-d₆): δ 163.2, 150.9, 150.0, 140.5, 118.0, 115.9, 109.4, 81.7, 79.7, 73.6, 72.0, 70.6, 61.0, 59.7; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇O₉ 329.0873; Found 329.0876.

1.3. General procedure for synthesis of 5a-e

In order to prepare the compound 4a-e, to the solution of substituted phenacyl bromides (1 equiv) (1) and thiourea (1.2 equiv) dissolved in ethanol (15 mL) was heated under reflux conditions. The reaction was continued until the substituted phenacyl bromide was completely consumed. The reaction mixture was cooled to room temperature and the ice-cold water was added to form precipitation which is further neutralized with NaHCO₃. The solution was filtered to get a white powder (2) and continued until no solid precipitation was obtained. Further, to the stirring solution of TEA (1.5 equiv) and chloroacetyl chloride solution (1.5 equiv in 3 mL of THF), the compound 2 was added and kept at 0 °C for 2-6 h to form 2-chloro-N-(benzo[d]thiazol-2-yl)acetamide (3) 1. After completion of the reaction, the solution was dissolved in DCM and washed with aqueous 1M NaOH and brine solution. The organic layer was collected and evaporated under reduced pressure, the compound (3) was purified by column chromatography and eluted with acetone: hexane (20:80). In the next step, compound 3(1 equiv) is reacted with piperazine (3 equiv) in the presence of TEA (1 equiv) and 1,4-dioxane at 110 °C for 2-6 h to form compound 4. Every structural moiety (4a-e) can be tailored individually with the aim of expediting systematic enhancement of the search for gradually effective bergenin analogues. In the final step, the bergenin analogues (5a-5e) were prepared by electrophilic substitution of various secondary amines at C₇ position of bergenin (5) using a Mannich reaction. To the solution of bergenin (1 equiv) dissolved in DMSO in the presence of 37% of formaldehyde (0.5 mL) and arylthiazolylpiperazines (1 equiv) at 50 °C for 12 h. After completion of the reaction, the reaction mixture was allowed to cool at room temperature, filtered and diluted with water. The DMSO in the solution was removed passed through the LH-20 resin bed and was further purified by column chromatography using Sephadex LH-20 eluting

with methanol to get the desired products (**5a-5e**) in pure form. As prepared bergenin analogues were confirmed by the spectral analysis IR, ¹H NMR, ¹³C NMR, Mass and HRMS spectroscopy.

1.3.1. N-(4-(4-Methoxyphenyl)thiazol-2-yl)-2-(piperazin-1-yl)acetamide (4a):

White amorphous powder; yield: 42%; IR (neat): v_{max} 3392, 1633, 1450, 1011, 742, 670 cm⁻¹; ¹H NMR (400MHz, CD₃OD): δ 7.79 (2H, dd, J = 6.8, 2.1 Hz), 7.23 (1H, s), 6.95 (2H, dd, J = 6.7, 2.0 Hz), 3.82 (3H, s), 3.31 (2H, s), 2.97 (4H, t, J = 4.9 Hz), 2.62 (4H, t, J = 4.3 Hz); ¹³C NMR (100MHz, CD₃OD): δ 170.5, 161.2, 159.0, 151.0, 128.6, 128.4, 115.1, 107.1, 62.2, 55.8, 54.6, 46.2; HRMS (ESI) m/z: [M+H]+Calcd for C₁₆H₂₁O₂N₄S 333.1374; Found 333.1379.

1.3.2. N-(4-(4-Methoxyphenyl)thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (5a):

White amorphous powder; yield: 51%; IR (neat): v_{max} 3319, 2948, 2832, 1754 1652, 1450, 1122, 1021, 782 cm⁻¹; ¹H NMR (400MHz, CD₃OD): δ 7.79 (2H, dd, J = 6.8, 2.1 Hz), 7.23 (1H, s), 6.95 (2H, dd, J = 6.8, 2.1 Hz), 4.62 (1H, d, J = 9.6 Hz), 4.31 (1H, d, J = 14.9 Hz), 4.26 (1H, d, J = 14.9 Hz), 4.07-3.99 (2H, m), 3.90 (3H, s), 3.82 (3H, s), 3.79 (1H, t, J = 9.0 Hz), 3.70-3.64 (2H, m), 3.41 (1H, t, J = 9.0 Hz), 3.36 (2H, d, J = 7.7 Hz), 2.83 (4H, s), 2.74 (4H, s); ¹³C NMR (100MHz, CD₃OD): δ 170.4, 165.0, 161.2, 159.1, 154.5, 151.0, 148.8, 141.4, 128.6, 128.4, 118.7, 117.6, 115.1, 107.6, 82.9, 80.6, 75.6, 74.5, 71.8, 62.7, 61.3, 60.9, 57.1, 55.8, 53.7, 53.2; HRMS (ESI) m/z: [M+H]⁺Calcd for C₃₁H₃₇O₁₁N₄S 673.2192; Found 673.2174.

1.3.3. N-(4-(4-Chlorophenyl)thiazol-2-yl)-2-(piperazin-1-yl)acetamide (4b):

White amorphous powder; yield: 47%; IR (neat): v_{max} 3425, 1672, 1454, 1028, 786, 698 cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.78 (2H, dd, J = 6.7, 1.8 Hz), 7.38 (2H, dd, J = 6.7, 2.0 Hz), 7.14 (1H, s), 3.26 (2H, s), 3.04 (4H, s), 2.64 (4H, s); ¹³C NMR (100MHz, CDCl₃): δ 168.6, 157.2,

148.9, 133.8, 132.8, 128.9, 127.3, 108.2, 61.6, 54.3, 45.6; HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₅H₁₈ON₄ClS 337.0887; Found 337.0884.

1.3.4. N-(4-(4-Chlorophenyl)thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (5b):

White amorphous powder; yield: 59%; IR (neat): v_{max} 3328, 2947, 2836, 1763, 1652, 1454, 1102, 1028, 745 cm⁻¹; ¹H NMR (400MHz, CD₃OD): δ 7.76 (2H, dd, J = 6.8, 1.7 Hz), 7.32 (1H, s), 7.29 (2H, dd, J = 6.8, 1.8 Hz), 4.79 (1H, s), 4.16 (2H, s), 3.95-3.90 (2H, m), 3.80 (3H, s), 3.69 (1H, t, J = 9.0 Hz), 3.59-3.54 (2H, m), 3.31 (1H, t, J = 9.0 Hz), 3.27 (2H, s), 2.69 (4H, s), 2.63 (4H, s); ¹³C NMR (100MHz, CD₃OD): δ 170.5, 165.0, 159.3, 154.5, 149.9, 148.8, 141.4, 134.6, 134.5, 129.8, 128.5, 118.7, 118.2, 117.6, 109.6, 82.9, 80.6, 75.6, 74.5, 71.8, 62.7, 61.3, 60.9, 57.0, 53.6, 53.2; HRMS (ESI) m/z: [M+2H]⁺ Calcd for C₃₀H₃₅O₁₀N₄ClS 678.1761; Found 678.1757.

1.3.5. N-(4-Phenylthiazol-2-yl)-2-(piperazin-1-yl)acetamide (4c):

White amorphous powder; yield: 48%; IR (neat): v_{max} 3412, 1631, 1453, 1023, 754, 648 cm⁻¹; ¹H NMR (400MHz, CD₃OD+CDCl₃): δ 7.83 (2H, d, J = 7.2 Hz), 7.43 (2H, t, J = 7.5 Hz), 7.36-7.32 (1H, m), 7.25 (1H, s), 3.32 (2H, s), 3.06 (4H, t, J = 4.9 Hz), 2.69 (4H, t, J = 4.7 Hz); ¹³C NMR (100 MHz, CD₃OD+CDCl₃): δ 169.6, 158.2, 150.5, 134.7, 129.3, 128.6, 126.5, 108.5, 61.7, 53.9, 45.5; HRMS (ESI) m/z: [M+H]+Calcd for C₁₅H₁₉ON₄S 303.1266; Found 303.1274.

1.3.6. N-(4-Phenylthiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl) piperazin-1-yl)acetamide (5c):

White amorphous powder; yield: 53%; IR (neat): v_{max} 3344, 2943, 2830, 1712, 1652, 1452, 1121, 1024 ,754 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.88-7.85 (2H, m), 7.42-7.37 (3H, m), 7.30

(1H, t, J = 7.3 Hz), 4.62 (1H, d, J = 9.7 Hz), 4.32-4.23 (2H, m), 4.05-3.99 (2H, m), 3.90 (3H, s), 3.79 (1H, t, J = 9.0 Hz), 3.70-3.64 (2H, m), 3.41 (1H, t, J = 9.0 Hz), 3.36 (2H, d, J = 8.2 Hz), 2.82 (4H, s), 2.74 (4H, s); ¹³C NMR (100 MHz, CD₃OD): δ 170.5, 165.0, 159.2, 154.5, 151.1, 141.4, 135.7, 129.8, 129.1, 127.1, 118.7, 118.3, 117.5, 109.0, 83.0, 80.6, 75.6, 74.5, 71.8, 62.7, 61.3, 60.9, 57.0, 53.7, 53.2; HRMS (ESI) m/z: [M+H]+Calcd for C₃₀H₃₅O₁₀N₄S 643.2056; Found 643.2068.

1.3.7. N-(4-(Naphthalen-1-yl)thiazol-2-yl)-2-(piperazin-1-yl)acetamide (4d):

White amorphous powder; yield: 41%; IR (neat): v_{max} 3385, 1629, 1456, 1121, 1022, 788, 663 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.24-8.19 (1H, m), 7.91-7.87 (2H, m), 7.65 (1H, d, J = 7.0 Hz), 7.54-7.48 (3H, m), 7.11 (1H, s), 3.22 (2H, s), 2.93 (4H, t, J = 4.6 Hz), 2.57 (4H, s); 13C NMR (100 MHz, CDCl₃): δ 168.7, 156.8, 149.6, 133.9, 132.8, 131.4, 128.8, 128.4, 127.4, 126.4, 125.9, 125.6, 125.3, 111.8, 61.7, 54.5, 45.7; HRMS (ESI) m/z: [M+H]+Calcd for C₁₉H₂₁ON₄S 353.1425; Found 353.1430.

1.3.8. N-(4-(Naphthalen-1-yl)thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl) acetamide (5d):

White amorphous powder; yield: 47%; IR (neat): v_{max} 3356, 2945, 2834, 1791, 1649, 1456, 1101, 1021, 741 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 8.54 (1H, s), 8.36-8.32 (1H, m), 8.01-7.95 (2H, m), 7.69 (1H, d, J = 6.2 Hz), 7.59-7.52 (3H, m), 7.45 (1H, s), 5.67 (1H, s), 5.44 (1H, s), 4.92 (1H, d, J = 10.4 Hz), 4.15 (1H, d, J = 15.2 Hz), 4.07 (1H, d, J = 15.2Hz), 3.93 (1H, t, J = 9.3 Hz), 3.85 (1H, d, J = 10.5 Hz), 3.77 (3H, s), 3.66-3.55 (4H, m), 3.18 (2H, t, J = 9.2 Hz), 2.64 (4H, s), 2.57 (4H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 168.5, 162.5, 157.0, 153.1, 151.9, 148.7, 146.7, 139.3, 133.4, 132.6, 130.5, 128.3, 128.1, 127.1, 126.1, 125.8, 125.7, 125.3, 117.0,

115.6, 111.8, 81.4, 78.8, 73.5, 72.2, 70.4, 61.0, 59.6, 59.5, 56.3, 52.0, 51.6; HRMS (ESI) m/z: [M+H]+Calcd for C₃₄H₃₇O₁₀N₄S 693.2202; Found 693.2225

1.3.9. N-(4-(Naphthalen-2-yl)thiazol-2-yl)-2-(piperazin-1-yl)acetamide (4e):

White amorphous powder; yield: 45%; IR (neat): v_{max} 3354, 1648, 1434, 1023, 795, 697 cm⁻¹; ¹H NMR (500MHz, CD₃OD+CDCl₃): δ 8.36 (1H, s), 7.95 (1H, dd, J = 8.5, 1.8 Hz), 7.90-7.87 (1H, m), 7.51-7.45 (3H, m), 3.32 (2H, m), 2.99 (4H, t, J = 4.9 Hz), 2.64 (4H, t, J = 4.6 Hz); ¹³C NMR (100Hz, CD₃OD+CDCl₃): δ 170.4, 158.9, 150.8, 134.7, 134.3, 132.7, 129.2, 129.1, 128.5, 127.3, 127.0, 125.7, 124.9, 109.3, 62.1, 54.7, 46.1; HRMS (ESI) m/z: [M+H]+Calcd for C₁₉H₂₁ON₄S 353.1431; found 353.1430.

1.3.10. N-(4-(naphthalen-2-yl)thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (5e):

White amorphous powder; yield: 47%; IR (neat): v_{max} 3358, 2941, 2831, 1769, 1648, 1450, 1124, 1023, 763 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 8.29 (1H, s), 7.89 (1H, dd, J= 8.6, 1.8 Hz), 7.82-7.73 (4H, m), 7.44 (1H, s), 7.41-7.35 (2H, m), 4.80 (1H, s), 4.17 (2H, s), 3.96-3.90 (2H, m), 3.81 (3H, s), 3.69 (1H, t, J= 9.0 Hz), 3.59-3.54 (2H, m), 3.34-3.28 (3H, m), 2.71 (4H, s), 2.64 (4H, s); ¹³C NMR (100 MHz, CD₃OD): δ 170.5, 165.0, 159.3, 154.5, 151.1, 148.8, 141.4, 135.1, 134.6, 133.1, 129.4, 129.3, 128.8, 127.5, 127.2, 125.9, 125.1, 118.7, 118.4, 117.5, 109.6, 82.9, 80.6, 75.7, 71.8, 62.7, 61.3, 60.9, 57.1, 53.7, 53.2; HRMS (ESI) m/z: [M+]+Calcd for C₃₄H₃₆O₁₀N₄S 692.2152; Found 692.2156.

1.4. General experimental procedure for the synthesis of 10a-j

In another reaction, 1 equivalence of different substituted aryl anilines (6a-j) are reacted with potassium thiocyanide in the presence of bromine in glacial acetic acid at room temperature

for 3 h². After stirring the reaction mixture for 2-4 h at room temperature, the hydrogen bromide (HBr) salt present in the reaction mixture was separated, filtered, washed with acetic acid. Further, the solution was dried with a rotary evaporator, diluted with hot water and basified with the ammonia solution (pH 11.0). The obtained precipitate was washed with water to afford the 2amino-4,6-substituted benzothiazoles (7a-i) in good yield. As described earlier 2, this amino group of 7a-i (1 equiv) was reacted with stirring solution of chloroacetyl chloride (1.2 equiv) dissolved in benzene in the presence of K₂CO₃ (1.2 equiv) at room temperature and refluxed for 6-12 h. The resultant was further cool to room temperature and add ice cold water to afford the substituted 2-chloro-N-(benzo[d]thiazol-2-yl)acetamides (8a-j). Further, these substituted chloroacetamides (1 equiv) are reacted with piperazine (3 equiv) in the presence of TEA (1 equiv) and 1,4-dioxane at 110 °C for 2-6 h to form substituted N-(benzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamides (9a-j)³. Finally, the diluted solution of bergenin (1 equiv) in DMSO was treated with substituted benzothiazolylpiperazines (1 equiv) in the presence of 37% of formaldehyde (0.5 mL) at 50 °C for 12 h. The reaction solution was cooled to room temperature, filtered, and diluted with water. The DMSO in the solution was removed passed through the LH-20 resin bed and was further purified by column chromatography using Sephadex LH-20 eluting with methanol to get the desired products (10a-j) in pure form. As prepared bergenin analogues were confirmed by the spectral analysis IR, ¹H NMR, ¹³C NMR, Mass and HRMS spectroscopy.

1.4.1. N-(6-methoxybenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide(9a):

White amorphous powder; yield: 48%; IR (neat): v_{max} 3358, 1639, 1453, 1029, 748, 632 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.62 (1H, d, J= 8.9 Hz), 7.41 (1H, d, J= 2.6 Hz), 7.04 (1H, dd, J= 8.8, 2.6 Hz), 3.85 (3H, s), 3.34 (2H, s), 2.98 (4H, t, J= 4.9 Hz), 2.65 (4H, t, J= 4.8 Hz), ¹³C NMR

(100 MHz, CD₃OD): δ 170.9, 158.6, 157.4, 143.7, 134.5, 122.4, 116.5, 105.3, 62.2, 56.3, 54.4, 46.1; HRMS (ESI) m/z: [M+]+Calcd for C₁₄H₁₈N₄O₂S 306.1150 Found 306.1153.

1.4.2. N-(6-Methoxybenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (10a):

White amorphous powder; yield: 47%; IR (neat): v_{max} 3358, 2967, 2884, 1718, 1670, 1463, 1166, 1083, 749 cm⁻¹; ¹H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.62 (1H, d, J = 8.8 Hz), 7.41 (1H, d, J = 2.6 Hz), 7.03 (1H, dd, J = 8.8, 2.6 Hz), 4.88 (1H, s), 4.26 (2H, s), 4.05-3.99 (2H, m), 3.90 (3H, s), 3.84 (3H, s), 3.79 (1H, t, J = 9.1 Hz), 3.70-3.65 (2H, m), 3.43-3.37 (3H, m), 2.80 (4H, s), 2.74 (4H, s); ¹³C NMR (100 MHz, CD₃OD+CDCl₃): δ 168.5, 162.7, 156.3, 155.1, 152.3, 146.6, 141.4, 139.2, 132.3, 120.3, 116.3, 115.2, 114.4, 103.1, 80.7, 78.4, 73.4, 72.4, 69.6, 60.6, 59.3, 58.9, 55.3, 54.3, 51.7, 51.1; HRMS (ESI⁺) m/z: [M+H]⁺Calcd for C₂₉H₃₅O₁₁N₄S 647.1997; Found 647.2017.

1.4.3. N-(Benzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl) piperazin-1-yl)acetamide (10b):

White amorphous powder; yield: 61%; IR (neat): v_{max} 3312, 2943, 2831, 1751, 1651, 1452, 1136, 1021, 714 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 8.58 (1H, s), 7.98 (1H, d, J = 7.5 Hz), 7.75 (1H, d, J = 8.1 Hz), 7.47-7.42 (1H, m), 7.34-7.29 (1H, m), 5.67 (1H, s), 5.42 (1H, s), 4.93 (1H, d, J = 10.3 Hz), 4.22-4.08 (2H, m), 3.95 (1H, t, J = 9.8 Hz), 3.85 (1H, d, J = 10.3 Hz), 3.78 (3H, s), 3.73-3.54 (4H, m), 3.19 (2H, t, J = 9.2 Hz), 2.66 (8H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 169.3, 162.6, 157.4, 153.0, 148.4, 146.7, 139.3, 131.3, 126.1, 123.5, 121.6, 120.4, 117.1,

115.6, 81.4, 78.8, 73.5, 72.2, 70.4, 61.0, 59.7, 59.5, 56.4, 52.0, 51.6; HRMS (ESI) m/z: [M+H]+Calcd for C₂₈H₃₃O₁₀N₄S 617.1896; Found 617.1911.

1.4.4. N-(6-Nitrobenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (10c):

Yellow amorphous powder; yield: 49%; IR (neat): v_{max} 3362, 2976, 2834, 1787, 1655, 1516, 1459, 1298, 1086, 738 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 9.06 (1H, d, J = 2.6 Hz), 8.55 (1H, s), 8.32-8.27 (1H, m), 7.90 (1H, d, J = 9.0 Hz), 5.66 (1H, s), 5.42 (1H, s), 4.92 (1H, d, J = 10.3 Hz), 4.18-4.07 (2H, m), 3.93 (1H, t, J = 9.8 Hz), 3.85 (1H, d, J = 10.1 Hz), 3.77 (3H, s), 3.66-3.56 (4H, m), 3.18 (2H, t, J = 9.0 Hz), 2.65 (4H, s), 2.60 (4H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 170.1, 163.1, 162.6, 153.3, 153.0, 146.7, 142.9, 139.3, 132.1, 121.7, 120.5, 119.0, 117.1, 115.6, 81.4, 78.8, 73.5, 72.2, 70.4, 61.0, 59.6, 59.5, 52.0, 51.6; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₈H₃₂O₁₂N₅S 662.1737; Found 662.1762.

1.4.5. N-(4-chlorobenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide (9d):

White amorphous powder; yield: 62%; IR (neat): v_{max} 3347, 1639, 1453, 1060, 788, 663 cm⁻¹; ¹H NMR (500MHz, CD₃OD+CDCl₃): δ 7.78 (1H, d, J = 7.9 Hz), 7.49 (1H, d, J = 7.8 Hz), 7.29 (1H, t, J = 7.8 Hz), 3.35 (2H, s), 3.02 (4H, t, J = 4.7 Hz), 2.66 (4H, s); ¹³C NMR (100 MHz, CD₃OD+CDCl₃): δ 170.7, 159.1, 145.8, 133.9, 127.1,126.3, 125.4, 120.7, 61.8, 54.4, 45.6; HRMS (ESI) m/z: [M+]+Calcd for C₁₃H₁₅ClN₄OS 310.0655; Found 310.0648.

1.4.6. N-(4-Chlorobenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl) piperazin-1-yl)acetamide (10d):

White amorphous powder; yield: 37%; IR (neat): v_{max} 3329, 2967, 2863, 1724, 1682, 1459, 1141, 1060, 793 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 8.57 (1H, s), 7.97 (1H, d, J = 7.9 Hz), 7.31 (1H, d, J = 7.9 Hz), 7.54 (1H, d, J = 7.7 Hz), 5.68 (1H, s), 5.43 (1H, s), 4,92 (1H, d, J = 10.4 Hz), 4.05 (2H, s), 3.94 (1H, t, J = 9.8 Hz), 3.85 (1H, d, J = 10.3 Hz), 3.77 (3H, s), 3.63 (2H, t, J = 9.2 Hz), 3.59-3.55 (2H, m), 2.64 (8H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 169.6, 162.7, 158.6, 153.0, 147.0, 145.3, 139.4, 133.0, 126.2, 124.5, 124.3, 120.8, 117.2, 115.8, 81.4, 78.8, 73.5, 72.2, 70.5, 61.0, 59.6, 51.7; HRMS (ESI) m/z: [M+H]⁺ Cal for $C_{28}H_{32}O_{10}N_4ClS$ 651.1541; found 651.1522.

1.4.7. N-(6-Chlorobenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide(9e):

White amorphous powder; yield: 38%; IR (neat): v_{max} 3381, 1642, 1453, 1025, 761, 643 cm⁻¹. ¹H NMR (500MHz, CD₃OD): δ 7.85 (1H, d, J = 2.0 Hz), 7.69 (1H, d, J = 4.6 Hz), 7.41 (1H, d, J = 8.5, 2.1 Hz), 3.35 (2H, s), 2.98 (4H, t, J = 4.9 Hz), 2.65 (4H, t, J = 4.6 Hz); ¹³C NMR (100 MHz, CD₃OD): δ 170.9, 159.9, 148.6, 134.9, 130.5, 127.9, 122.9, 122.2, 61.2, 51.5, 45.1; HRMS (ESI) m/z: [M+H]⁺Calcd for C₁₃H₁₆ON₄CIS 311.0716; Found 311.0727.

1.4.8. N-(6-Chlorobenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide(10e):

White amorphous powder; yield: 43%; IR (neat): v_{max} 3358, 2994, 2876, 1785, 1659, 1456, 1132, 1029, 762 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 8.54 (1H, s), 8.12 (1H, d, J = 2.2 Hz), 7.73 (1H, d, J = 8.8 Hz), 7.46 (1H, dd, J = 8.6, 2.2 Hz), 4.91 (1H, d, J = 10.5 Hz), 4.14 (1H, d, J = 15.2 Hz), 4.07 (1H, d, J = 15.2 Hz), 3.93 (1H, t, J = 9.8 Hz), 3.84 (1H, d, J = 10.1 Hz), 3.76 (3H, s), 3.63 (2H, t, J = 9.0 Hz), 3.58-3.55 (2H, m), 3.20-3.16 (2H, m), 2.63 (4H, s), 2.57 (4H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 169.6, 162.6, 158.3, 153.1, 147.3, 146.8, 139.3, 133.1, 127.6,

126.4, 121.7, 121.4, 117.1, 115.7, 81.4, 78.8, 73.5, 72.3, 70.5, 61.0, 59.7, 59.5, 52.0, 51.6; HRMS (ESI) m/z: [M+H]+Calcd for C₂₈H₃₂O₁₀N₄ClS 651.1501; Found 651.1522.

1.4.9. N-(6-Methylbenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide (9f):

White amorphous powder; yield: 48%; IR (neat): v_{max} 3258, 1652, 1453, 1023,798, 699 cm⁻¹; ¹H NMR (400 MHz, CD₃OD+CDCl₃): δ 7.64-7.61 (2H, m), 7.26 (1H, dd, J = 8.4, 1.5 Hz), 3.34 (2H, s), 2.99 (4H, t, J = 4.8 Hz), 2.65 (4H, t, J = 4.3 Hz), 2.46 (3H, s); ¹³C NMR (100 MHz, CD₃OD+CDCl₃): δ 170.7, 158.2, 147.1, 135.2, 133.1, 128.7, 122.0, 121.2, 62.1, 54.4, 46.0, 21.5; HRMS (ESI) m/z: [M+]+Calcd for C₁₄H₁₈N₄OS 290.1201; Found 290.1201.

1.4.10. N-(6-Methylbenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide(10f):

White amorphous powder; yield: 56%; IR (neat): v_{max} 3368, 3331, 2947, 2836, 1771, 1652, 1453, 1022, 769 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.67 (1H, s), 7.63 (1H, d, J = 8.3 Hz), 7.27 (1H, d, J = 8.3 Hz), 5.0 (1H, d, J = 10.5 Hz), 4.76 (1H, d, J = 12.7 Hz), 4.48 (1H, d, J = 12.7 Hz), 4.15-4.03 (2H, m), 3.97 (3H, s), 3.83 (1H, t, J = 9.0 Hz), 3.74-3.66 (3H, m), 3.53-3.41 (6H, m), 3.22-3.11 (2H, m), 2.88-2.75 (2H, m), 2.45 (3H, s); ¹³C NMR (100 MHz, CD₃OD): δ 170.5, 165.7, 158.6, 152.7, 150.6, 147.6, 135.5, 133.4, 128.9, 122.2, 121.5, 120.2, 119.4, 112.0, 83.2, 80.7, 75.5, 74.3, 71.9, 62.6, 61.2, 60.5, 53.7, 50.6, 21.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₉H₃₅N₄O₁₀S 631.2074; Found 631.2093.

1.4.11. N-(4-Methylbenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide (9g):

White amorphous powder; yield: 39%; IR (neat): v_{max} 3269, 1655, 1451, 1023, 861, 697 cm⁻¹. ¹H NMR (500MHz, CDCl₃): δ 7.62 (1H, d, J = 7.6 Hz), 7.26-7.20 (2H, m), 3.27 (2H, s), 3.01 (4H, t, J = 4.8 Hz), 2.67 (3H, s), 2.67 (4H, t, J = 4.4 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 169.1, 156.1,

147.6, 132.0, 130.8, 126.9, 123.9, 118.8, 61.9, 54.8, 45.9, 18.1; HRMS (ESI) m/z: [M+H]+Calcd for C₁₄H₁₉ON₄S 291.1269; Found 291.1274.

1.4.12. N-(4-Methylbenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide(10g):

White amorphous powder; yield: 48%; IR (neat): v_{max} 3364, 2943, 2831, 1747, 1689, 1451, 1109, 1023, 855 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.65 (1H, d, J = 7.1 Hz), 7.25-7.16 (2H, m), 4.80 (1H, d, J = 10.6 Hz), 4.23 (2H, s), 4.05-3.99 (2H, m), 3.89 (3H, s), 3.78 (1H, t, J = 9.0 Hz), 3.71-3.62 (2H, m), 3.41(1H, t, J = 8.9 Hz), 3.37 (2H, s), 2.75 (8H, s), 2.58 (3H, s); ¹³C NMR (100 MHz, CD₃OD): δ 171.0, 165.0, 154.3, 149.0, 148.7, 141.4, 133.0, 131.8, 130.2, 128.0, 125.2, 120.0, 118.8, 117.7, 83.0, 80.6, 75.6, 74.5, 71.8, 62.7, 61.3, 60.9, 53.5, 53.3, 18.2; HRMS (ESI) m/z: [M+H]+Calcd for C₂₉H₃₅N₄O₁₀S 631.2052.Found 631.2068.

1.4.13. N-(6-Ethoxybenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide(9h):

White amorphous powder; yield: 43%; IR (neat): $v_{max}3382$, 1642, 1493, 1119, 810, 699 cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.68 (1H, d, J = 9.0 Hz), 7.28 (1H, d, J = 2.4 Hz), 7.04 (1H, dd, J = 9.0, 2.4 Hz), 4.09 (2H, dd, J = 14.0, 7.0 Hz), 3.26 (2H, s), 3.0 (4H, s), 2.63 (4H, s), 1.43 (3H, t, J = 7.0 Hz); ¹³C NMR (100 MHz, CDCl₃): δ 168.9, 156.2, 155.1, 142.5, 133.4, 121.5, 115.7, 105.0, 64.1, 61.7, 54.6, 45.8, 14.8; HRMS (ESI) m/z: [M+H]+Calcd for C₁₅H₂₁N₄O₂S 321.1385; Found 321.1394.

1.4.14. N-(6-Ethoxybenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl) methyl)piperazin-1-yl)acetamide (10h):

White amorphous powder; yield: 51%; IR (neat): v_{max} 3439, 2997, 2896, 1773, 1663, 1439, 1129, 1028, 759 cm⁻¹. ¹H NMR (400 MHz, CD₃OD): δ 7.59 (1H, dd, J = 8.8, 3.3 Hz), 7.35 (1H, d, J = 2.3 Hz), 7.0 (1H, dd, J = 8.8, 2.4 Hz), 4.81 (1H, s), 4.22 (2H, s), 4.08-3.99 (4H, m), 3.89 (3H, s), 3.78 (1H, t, J = 9.0 Hz), 3.70-3.63 (2H, m), 3.41 (1H, t, J = 9.0 Hz), 3.37 (2H, s), 2.73 (8H, s), 1.40 (3H, t, J = 7.0 Hz); ¹³C NMR (100 MHz, CD₃OD): δ 170.8, 164.9, 157.8, 154.6, 148.6, 143.6, 141.4, 134.5, 122.4, 118.7, 118.5, 117.4, 116.9, 106.0, 82.9, 80.5, 75.6, 74.5, 71.8, 65.2, 62.7, 60.9, 57.3, 53.8, 53.2, 15.2; HRMS (ESI) m/z: [M+]+Calcd for C₃₀H₃₆N₄O₁₁S 660.2101; Found 660.2100.

1.4.15. N-(6-Fluorobenzo[d]thiazol-2-yl)-2-(piperazin-1-yl)acetamide (9i):

White amorphous powder; yield: 36%; IR (neat): v_{max} 3285, 1672, 1453, 1010, 746, 693 cm⁻¹; ¹H NMR (500MHz, CD₃OD): δ 7.77-7.71 (1H, m), 7.54 (1H, dd, J = 16.3, 7.5 Hz), 7.24-7.17 (1H, m), 3.35 (2H, s), 3.01 (4H, s), 2.66 (4H, s); ¹³C NMR (100 MHz, CD₃OD): δ 171.3, 162.3, 159.4, 146.4, 134.6, 123.0, 122.9, 115.6, 115.4, 108.8, 108.6, 62.3, 54.7, 46.2; HRMS (ESI) m/z: [M+H]+Calcd for C₁₃H₁₅FN₄OS 294.0950; Found 294.0952.

1.4.16. N-(6-Fluorobenzo[d]thiazol-2-yl)-2-(4-(((2R,3S,4S)-3,4,8,10-tetrahydroxy-2-(hydroxy methyl)-9-methoxy-6-oxo-2,3,4,4a,6,10b-hexahydropyrano[3,2-c]isochromen-7-yl)methyl)piperazin-1-yl)acetamide (10i):

White amorphous powder; yield: 52%; IR (neat): v_{max} 3351, 2956, 2896, 1712, 1623, 1456, 1115, 1039, 739 cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ 8.55 (1H, s), 7.90 (1H, dd, J = 8.8, 2.5 Hz), 7.78-7.72 (1H, m), 7.29 (1H, ddd, J = 18.2, 9.4, 2.7 Hz), 5.66 (1H, s), 5.40 (1H, s), 4.92 (1H, d, J = 10.2 Hz), 4.19-4.07 (2H, m), 3.93 (1H, t, J = 9.8 Hz), 3.85 (1H, d, J = 11.0 Hz), 3.77 (3H, s), 3.67-3.54 (4H, m), 3.18 (2H, t, J = 9.0 Hz), 2.63 (8H, s); ¹³C NMR (100 MHz, DMSO-d₆): δ 169.4, 162.3, 159.8, 157.4, 145.1, 139.3, 132.7, 121.6, 121.5, 117.1, 115.7, 114.3, 114.1,

108.3, 108.0, 81.4, 78.8, 73.5, 72.2, 70.5, 61.0, 59.6, 52.0, 51.6; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₈H₃₂O₁₀N₄FS 635.1805; Found 635.1817.

1.5. General experimental procedure for the synthesis of 13a-o

The arylsulfonylpiperazine attached bergenin series was prepared as depicted in the scheme 3. Initially, the anhydrous piperazine (3 equiv) was dissolved in THF and TEA (1.2 equiv) at 0 °C and the different benzenesulfonyl chlorides (1.2 equiv) (11a-o) were added dropwise to the solution⁴. Further, the reaction mixture was stirred for 3 h at room temperature until the reaction was completed. After confirmation with TLC, the reaction solution was removed using a rotary evaporator and workup with water and DCM. The organic layer was separated, dried with NaHSO₄, evaporated using a rotary evaporator and purified using silica gel (60-120 mesh) column chromatography to afford the different arylsulfonyl substituted piperazine (12a-o). Finally, these arylsulfonyl substituted piperazine (1 equiv) was treated with bergenin (1 equiv) dissolved in DMSO in the presence of 37% of formaldehyde (0.5 mL) at 50 °C for 12 h. After completion of the reaction, the reaction mixture was cool to room temperature and diluted with water. The DMSO in the solution was removed passed through the LH-20 resin bed and was further purified by column chromatography using Sephadex LH-20 eluting with methanol to get the desired products (13a-o) in pure form. As prepared arylsulfonylpiperazine attached bergenin analogues were confirmed by the spectral analysis IR, ¹H NMR, ¹³C NMR, Mass and HRMS spectroscopy.

1.5.1. (2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-tosylpiperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13a) White amorphous powder; yield: 72%; IR (neat): v_{max} 3395, 3010, 2836, 1697, 1180, 1059, 786 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.65 (2H, d, J = 8.3 Hz), 7.43 (2H, d, J = 8.1 Hz), 4.85

(1H, s), 4.20 (1H, d, J = 14.4 Hz), 4.09 (1H, d, J = 14.4 Hz), 4.03-3.95 (2H, m), 3.84 (3H, s), 3.79-3.74 (1H, m), 3.68-3.63 (2H, m), 3.39 (1H, t, J = 8.9 Hz), 3.01 (4H, s), 2.65 (4H, s), 2.45 (3H, s); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.5, 148.6, 145.7, 141.2, 133.6, 131.0, 129.1, 118.8, 118.7, 117.9, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.9, 52.8, 47.1, 21.6; HRMS (ESI) m/z: [M+H]+ C₂₆H₃₃N₂O₁₁S 581.1805; Found 581.1829.

1.5.2. (2R,3S,4S)-7-((4-((4-Bromophenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,8,10-tetra hydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13b):

White amorphous powder; yield: 62%; IR (neat): v_{max} 3348, 2997, 2896, 1682, 1120, 1021, 765 cm⁻¹; ¹H NMR (300MHz, CD₃OD): δ 7.84 (2H, d, J = 8.5 Hz), 7.73 (2H, d, J = 8.5 Hz), 4.98 (1H, s), 4.66 (1H, d, J = 12.9 Hz), 4.41 (1H, d, J = 12.6 Hz), 4.10-4.01 (2H, m), 3.94 (3H, s), 3.82-3.74 (1H, m), 3.72-3.64 (3H, m), 3.62-3.34 (8H, m); ¹³C NMR (100 MHz, CD₃OD): δ 165.5, 152.7, 150.5, 141.5, 135.7, 134.0, 130.8, 129.7, 120.0, 119.3, 83.2, 80.6, 75.5, 74.2, 71.8, 62.6, 61.2, 53.7, 52.7, 44.5; HRMS (ESI) m/z: [M+H]+Calcd for C₂₅H₂₉BrN₂O₁₁S 644.0675; Found 644.0679.

1.5.3.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-((4-methoxy phenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13c):

White amorphous powder; yield: 57%; IR (neat): v_{max} 3423, 3012, 2977, 1612, 1190, 1032, 785, cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.61 (2H, dd, J = 6.8, 2.1 Hz), 7.03 (2H, dd, J = 6.8, 2.1 Hz), 4.83 (1H, s), 4.12 (1H, d, J = 14.4 Hz), 4.0 (1H, d, J = 14.4 Hz), 3.94-3.86 (2H, m), 3.80 (3H, s), 3.75 (3H, s), 3.70-3.65 (1H, m), 3.59-3.53 (2H, m), 3.29 (1H, t, J = 9.0 Hz), 2.92 (4H, s), 2.59-2.55(4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 165.0, 164.8, 153.5, 148.6, 141.2, 131.2,

128.0, 118.9, 118.7, 117.9, 115.6, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 56.3, 55.9, 52.8, 47.1; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₆H₃₃N₂O₁₂S 597.1754; Found 597.1758.

1.5.4.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-(phenylsulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13d):

White amorphous powder; yield: 52%; IR (neat): v_{max} 3425, 2947, 2886, 1692, 1180, 1022, 775 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.83 (2H, dd, J = 7.2, 1.4 Hz), 7.75-7.70 (1H, m), 7.67-7.63 (2H, m), 4.97 (1H, d, J = 10.5 Hz), 4.68 (1H, d, J = 12.7 Hz), 4.43 (1H, d, J = 12.7 Hz), 4.09-4.00 (2H, m), 3.95 (3H, s), 3.81-3.77 (1H, m), 3.73-3.64 (3H, m), 3.56-3.47 (2H, m), 3.44-3.37 (2H, m), 2.83-2.73 (2H, m), 2.66 (2H, s); ¹³C NMR (100 MHz, CD₃OD): δ 165.5, 152.7, 150.6, 141.5, 136.3, 134.9, 130.7, 129.1, 120.1, 119.4, 111.6, 83.2, 80.7, 75.5, 74.2, 71.8, 62.6, 61.2, 53.0, 52.6, 44.3; HRMS (ESI) m/z: [M+H]+Calcd for C₂₅H₃₁N₂O₁₁S 567.1649. Found 567.1653.

1.5.5. (2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-(naphthalen-1-ylsulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2H)-one (13e):

White amorphous powder; yield: 48%; IR (neat): v_{max} 3401, 2977, 28126, 1658, 1165, 1028, 775 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 8.72 (1H, d, J = 8.8 Hz), 8.26-8.22 (2H, m), 8.05 (1H, d, J = 8.2 Hz), 7.74-7.69 (1H, m), 7.67-7.63 (2H, m), 4.92 (1H, d, J = 10.5 Hz), 4.55 (1H, d, J = 13.1 Hz), 4.32 (1H, d, J = 13.2 Hz), 4.07-3.99 (2H, m), 3.91 (3H, s), 3.79-3.75 (1H, m), 3.69-3.63 (2H, m), 3.78 (1H, t, J = 8.9 Hz), 3.55-3.32 (4H, m), 3.29-3.20 (4H, s); ¹³C NMR (100 MHz, CD₃OD): δ 165.3, 153.9, 150.1, 141.5, 136.4, 136.0, 133.0, 132.2, 130.4, 130.1, 129.6, 128.0,

125.9, 125.5, 119.7, 119.0, 113.4, 83.1, 80.6, 75.6, 74.2, 71.8, 62.6, 61.1, 54.0, 52.9, 44.4; HRMS (ESI) m/z: [M+H]+ Calcd for C₂₉H₃₃N₂O₁₁S 617.1805; Found 617.1812.

1.5.6. (2R,3S,4S)-7-((4-((3,4-Dimethoxyphenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,8,10-tetra hydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13f):

White amorphous powder; yield: 69%; IR (neat): v_{max} 3396, 3094, 3010, 1636, 1145, 1064, 771 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.38 (1H, d, J = 8.4, 2.0 Hz), 7.23 (1H, d, J = 2.0 Hz), 7.15 (1H, d, J = 8.4 Hz), 4.89 (1H, s), 4.24 (1H, d, J = 14.3 Hz), 4.12 (1H, d, J = 14.3 Hz), 4.06-3.96 (2H, m), 3.92 (3H, s), 3.88 (3H, s), 3.86 (3H, s), 3.79-3.74 (1H, m), 3.69-3.63 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.06 (4H, s), 2.71 (4H, s); ¹³C NMR (100 MHz,CD₃OD): δ 164.8, 153.5, 150.7, 148.7, 141.2, 128.1, 123.1, 118.8, 118.0, 112.4, 111.7, 83.0, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 56.8, 56.7, 55.7, 52.8, 47.0; HRMS (ESI⁺) m/z: [M+H]⁺ Calcd for C₂₇H₃₅O₁₃N₂S 627.1845; Found 627.1854.

1.5.7.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-((2,3,4 trifluorophenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2H)-one (13g):

White amorphous powder; yield: 74%; IR (neat): v_{max} 3385, 2982, 2867, 1657, 1140, 1034, 779 cm⁻¹. ¹H NMR (300MHz, CD₃OD): δ 7.71-7.762 (1H, m), 7.40-7.30 (1H, m), 4.86 (1H, s), 4.23 (1H, d, J = 14.3 Hz), 4.10 (1H, d, J = 14.3 Hz), 4.06-3.86 (2H, m), 3.87 (3H, s), 3.81-3.74 (1H, m), 3.70-3.62 (2H, m), 3.39 (1H, t, J = 8.7 Hz), 3.23 (4H, s), 2.71-2.64 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.4, 148.6, 141.1, 127.0, 124.1, 124.0, 119.0, 118.8, 118.0, 114.2, 114.0, 83.0, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.7, 52.9, 46.6; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₈F₃N₂O₁₁S 621.1389; Found 621.1360;

1.5.8.(2R,3S,4S)-7-((4-((3,4-Difluorophenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,8,10-tetra hydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13h):

White amorphous powder; yield: 59%; IR (neat): v_{max} 3281, 2987, 2866, 1633, 1110, 1015, 769 cm⁻¹; ¹HNMR (400 MHz, CD₃OD): δ 7.75 (1H, dtd, J = 17.0, 9.5, 2.1 Hz), 7.66-7.61 (1H, m), 7.58-7.51 (1H, m), 4.8 (1H, s), 4.20 (1H, d, J = 14.3 Hz), 4.09 (1H, d, J = 14.3 Hz), 4.06-3.96 (2H, m), 3.85 (3H, s), 3.79-3.74 (1H, m), 3.69-3.62 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.07, (4H, s), 2.70-2.62 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.4, 148.6, 141.2, 134.1, 126.7, 119.8, 119.6, 119.0, 118.9, 118.7, 118.7 118.0, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.7, 52.8, 47.1; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₉O₁₁N₂F₂S 603.1481; Found 603.1454.

1.5.9.(2R,3S,4S)-7-((4-((3-Chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13i):

White amorphous powder; yield: 64%; IR (neat): v_{max} 3325, 3001, 2971, 1662, 1131, 1041, 796 cm⁻¹. ¹H NMR (500MHz, CD₃OD): δ 7.93 (1H, dd, J = 6.8, 2.3 Hz), 7.78-7.75 (1H, m), 7.51 (1H, ddd, J = 17.4, 8.7, 3.1 Hz), 4.88 (1H, s), 4.21 (1H, d, J = 14.1 Hz), 4.09 (1H, d, J = 14.3 Hz), 4.03-3.96 (2H, m), 3.86 (3H, s), 3.81-3.74 (1H, m), 3.68-3.63 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.08 (4H, s), 2.69- 2.63 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.7, 163.4, 160.9, 153.4, 148.6, 141.2, 134.4, 131.7, 130.0, 130.0, 123.5, 123.3, 119.0, 118.8, 118.0, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.7, 52.8, 47.0; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₉O₁₁N₂CIFS 618.1183; Found 619.1159;

1.5.10.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-((4-(trifluoro methoxy)phenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13j):

White amorphous powder; yield: 58%; IR (neat): v_{max} 3311, 3001, 2907, 1629, 1135, 1033, 728 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.90 (2H, dd, J = 6.8, 2.1 Hz), 7.55-7.52 (2H, m), 4.89 (1H, s), 4.22 (1H, d, J = 14.3 Hz), 4.09 (1H, d, J = 14.3 Hz), 4.03-3.96 (2H, m), 3.85 (3H, s), 3.79-3.74 (1H, m), 3.68-3.62 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.07 (4H, s), 2.70-2.63 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.8, 153.4, 148.6, 141.2, 135.7, 131.5, 122.5, 119.0, 118.7, 118.0, 83.0, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.7, 52.9, 47.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₃₀O₁₂N₂F₃S 651.1497; Found 651.1466.

1.5.11.(2R,3S,4S)-7-((4-((2-Chloro-4-fluorophenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13k):

White amorphous powder; yield: 68%; IR (neat): v_{max} 3311, 3012, 2989, 1671, 1137,1096, 766 cm⁻¹. 1H NMR (400 MHz, CD₃OD): δ 8.09 (1H, dd, J = 8.8, 5.9 Hz), 7.50 (1H, dd, J = 8.6, 2.5 Hz), 7.28 (1H, dddd, J = 16.7, 10.3, 7.7, 2.6 Hz), 4.89 (1H, d, J = 10.5 Hz), 4.24 (1H, d, J = 14.3 Hz), 4.14 (1H, d, J = 14.3 Hz), 4.06-3.97 (2H, m), 3.88 (3H, s), 3.81-3.75 (1H, m), 3.69-3.64 (2H, m), 3.39 (1H, t, J = 9.1 Hz), 3.37-3.32 (4H, m), 2.70-2.65 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.5, 148.7, 141.2, 135.6, 135.5, 133.6, 121.0, 120.7, 118.8, 118.0 115.8, 115.6, 83.0, 80.6, 75.6, 74.5, 71.8, 62.7, 60.9, 55.8, 53.2, 46.4; HRMS (ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₉O₁₁N₂CIFS 619.1188; Found 619.1159;

1.5.12.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-(thiophen-2-yl sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2H)-one (13l):

White amorphous powder; yield: 73%; IR (neat): v_{max} 3365, 2997, 2876, 1637, 1210, 1075, 715 cm⁻¹; ¹H NMR (400 MHz, CD₃OD): δ 7.88 (1H, dd, J = 5.0, 1.3 Hz), 7.61 (1H, dd, J = 3.7, 1.0 Hz), 7.26-7.24 (1H, m), 4.93 (1H, s), 4.23 (1H, d, J = 14.2 Hz), 4.10 (1H, d, J = 14.2Hz), 4.03-3.96 (2H, m), 3.86(3H, s), 3.80-3.75 (1H, m), 3.69-3.63 (2H, m), 3.39 (1H, t, J = 8.9 Hz), 3.09 (4H, s), 2.73-2.66 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.5, 148.6, 141.2, 136.7, 134.3, 129.2, 119.0, 118.8, 118.0, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.7, 52.7, 47.2; HRMS (ESI) m/z: [M+H]+Calcd for C₂₃H₂₉N₂O₁₁S₂ 573.1213; Found 573.1216.

1.5.13. (2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-((4-(trifluoro methyl)phenyl)sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13m):

White amorphous powder; yield: 61%; IR (neat): v_{max} 3369, 3083, 2936, 1649, 1137,1019, 767 cm⁻¹; 1H NMR (400 MHz, CD₃OD): δ 7.91 (2H, dd, J = 6.8, 2.1 Hz), 7.55-7.52 (2H, m), 4.89 (1H, s), 4.22 (1H, d, J = 14.2 Hz), 4.09 (1H, d, J = 14.2 Hz), 4.04-3.96 (2H, m), 3.85 (3H, s), 3.79-3.74 (1H, m), 3.69-3.63 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.07 (4H, s), 2.71-2.63 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.4, 148.6, 141.1, 140.8, 135.8, 135.5, 129.8, 127.6, 123.6, 118.8, 118.0, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.6, 52.8, 47.0; HRMS (ESI) m/z: [M+H]⁺ C₂₆H₃₀O₁₁N₂F₃S 635.1489; Found 635.1516.

1.5.14.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-9-methoxy-7-((4-((4-nitrophenyl) sulfonyl)piperazin-1-yl)methyl)-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2*H*)-one (13n):

Yellow amorphous powder; yield: 56%; IR (neat): v_{max} 3324, 3001, 2947, 1678, 1486, 1120, 1097, 721 cm⁻¹. ¹H NMR (500MHz, CD₃OD): δ 8.45 (2H, dd, J = 7.0, 2.0 Hz), 8.02 (2H, dd, J = 6.9, 2.0 Hz), 4.88 (1H, s), 4.20 (1H, d, J = 14.2 Hz), 4.08 (1H, d, J = 14.3 Hz), 4.02-3.95 (2H, m), 3.84 (3H, s), 3.78-3.74 (1H, m), 3.68-3.63 (2H, m), 3.39 (1H, t, J = 9.1 Hz), 3.12 (4H, s), 2.69-2.65 (4H, s); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.4, 151.9, 148.6, 142.7, 141.1, 130.4, 125.6, 118.9, 118.7, 118.0, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.6, 52.8, 47.0; HRMS (ESI) m/z: [M+H]⁺ C₂₅H₃₀O₁₃N₃S 612.1522; Found 612.1493.

1.5.15.(2R,3S,4S)-3,4,8,10-Tetrahydroxy-2-(hydroxymethyl)-7-((4-((4-

iodophenyl)sulfonyl)piperazin-1-yl)methyl)-9-methoxy-3,4,4a,10b-tetrahydropyrano[3,2-c]isochromen-6(2H)-one (13o):

White amorphous powder; yield: 59%; IR (neat): v_{max} 3310, 2917, 2811, 1629, 1152, 1005, 761 cm⁻¹. ¹H NMR (400 MHz, CD₃OD): 7.91 (2H, dd, J = 6.7, 1.8 Hz), 7.42 (2H, dd, J = 6.7, 1.8 Hz), 4.21 (1H, d, J = 14.3 Hz), 4.09 (1H, d, J = 14.3 Hz), 4.03-3.96 (2H, m), 3.85 (3H, s), 3.77 (1H, t, J = 9.0 Hz), 3.69-3.62 (2H, m), 3.39 (1H, t, J = 9.0 Hz), 3.05 (4H, s), 2.68-2.64 (4H, m); ¹³C NMR (100 MHz, CD₃OD): δ 164.8, 153.4, 148.6, 141.2, 139.9, 136.5, 130.5, 119.0, 118.7, 118.0, 101.6, 82.9, 80.5, 75.6, 74.5, 71.8, 62.7, 60.9, 55.8, 52.8, 47.1; HRMS (ESI) m/z: [M+H] C₂₅H₃₀O₁₁N₂IS 693.0610; Found 693.0609.

1.6. Anticancer activity

1.6.1. Cell culture

The human cancer cells such as the tongue cancer cell lines CAL27, the oral squamous cell carcinoma cell line SCC09, the colorectal adenocarcinoma cell line HCT-15, the breast carcinoma cell line MCF7, the lung carcinoma cell line A549 and the normal lung epithelial cell lines BEAS-2B were purchased from the American Type Culture Cell lines (ATCC), United

States. These cells were grown as monolayer cultures in Dulbecco's modified Eagle's medium with 1% v/v of penicillin/streptomycin (Gibco) in 75 cm² flasks. HCT 116, MCF-7 and A549 cells were cultured in DMEM medium supplemented with 10% heat-inactivated fetal bovine serum and BEAS-2B (human bronchial epithelial cell line-2B) cells were cultured in BEGM media with growth factor supplements (LONZA, USA). The cells were cultured under standard conditions at 37 °C in a humidified atmosphere at 5% CO₂. All cell culture experiments were performed thrice as three biological repetitions.

1.6.2. *In vitro* cytotoxic activity

The *in vitro* cytotoxic activity of bergenin and its derivatives were measured using MTT assay based on the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium salt to formazan product. Cell lines such as HCT, A549 and CAL 27 were seeded 5×10³ cells/wall and A549, SCC09 and BEAS-2B were seeded 8×10³ cells/well in the 96 well plate and incubated for overnight for attachment. After 16 hrs of incubation, cells were treated with various concentrations of (12.5, 25, 50 and 100 μM) bergenin compounds and incubated for 48 hrs. After the incubation period, 25 μl of MTT solution (5 mg/ml) was added to each well and incubated further for 4 h. After incubation, the medium was discarded and 100 μl of DMSO was added to dissolve formazan crystals and gently mixed well for 10 min. The absorbance was measured at 570 nm using a microplate reader (Bio-rad, USA) and IC₅₀ values were calculated using Graphpad prism.

1.6.3. Cell cycle analysis

The effect of bergenin derivatives on the cell cycle analysis was determined with FxcycleTm PI/RNase staining solution using flow cytometry as per manufacturer's instructions. Cancer cell lines CAL27 and SCC09seeded at 5×10⁵ cells/well and were cultured

overnight in 6-well plates and treated with compounds **5a** (16 & 32 μM), **5c** (10&34 μM) **10f** (31.5 & 63 μM) and **13o** (21 & 42 μM) against CAL-27 cells and **5a** (16.2 & 32.4 μM), **5c** (17&34 μM) and **10f** (46 & 92 μM) against SCC09 cells at specified concentration. After 24 h incubation, the cells were trypsinized and counted. Thereafter the cells (5×10⁵) were fixed with 75% of cold ethanol for 4 h at 4 °C and then cells were stained withFxcycleTm PI/RNASE staining solution(0.25 ml/ 5×10⁵ cells) for 30 min in the dark at room temperature. After 30 minutes of incubation, cells were analyzed using BD accuri equipped with (Exitation-488 nm and Emission-585/42 nm) filters.

1.6.4. Apoptosis assay

The apoptotic events induced by the compounds 5a & 10f were determined by FITC Annexin V Apoptosis Detection Kit with PI based on the manufacturer protocol (Biolegend, USA). In brief, the CAL27 and SCC09 cells were seeded in 6-well plates at 5×10⁵cells/well with DMEM containing 10% FBS medium and incubated overnight at 5% CO₂ and 37 °C. Then,cells were treated with different concentrations of **5a** (16 & 32 μM), **5c** (10 & 34 μM) **10f** (31.5 & 63 μM) and **13o** (21 & 42 μM) against CAL-27 cells and **5a** (16.2 & 32.4 μM), **5c** (17 & 34 μM) and **10f** (46 & 92 μM) against SCC09 cells and DMSO was served as a vehicle control and further incubated for another24 h. After the treatment period, the cells were trypsinized counted and harvested (5×10⁵ cells/sample), washed with 1x PBS and then, cells were resuspended in annexin binding buffer with 1 μL of Annexin V and 2 μL of PI and further incubated in the dark for 15 mins. After 15 minutes of incubation, cells were analyzed using BD accuri equipped with (Exitation-488 nm and Emission-585/42 nm) filters.

1.6.5. RNA isolation, cDNA synthesis and qRT-PCR

CAL-27 or SCC09 cells were cultured, and seeded into 6 well plate at a density of 3 lakhs/well and 5 lakhs/well respectively. After 24 hrs of cell seeding, CAL 27 cells were treated with (5a, 10f, and 13p) and SCC09 cells were treated with compounds at specified concentrations and incubated for 48 hrs. Thereafter, cells were washed with 1XPBS and added 0.5 ml of Trizol/well and incubated for 5 minutes. Then cells were scrapped and collected into Eppendorf tubes. Then we followed the RNA isolation as described earlier (Andugulapati et al., 2020). Briefly, 150 ul of chloroform was added to each tube, mixed well and incubated for 10 minutes at room temperature. Then tubes were centrifuged (4 degrees) and supernatant (aquoes layer) was collected and equal amount of isopropanol was added and further incubated for 15 min at room temperature and centrifuged at 4 degrees for 15 minutes. Further supernatant was discarded and RNA pellet was washed with 75% ethanol twice and dried the pellet at room temperature. Thereafter pellet was dissolved in DEPC treated water and integrity and concentration of the RNA was estimated using nano-drop 5. About 1 µg of RNA was used to synthesis cDNA using script cDNA synthesis kit (Takara bio-India) according to manufacturer's instructions. The specific primers for the genes Vimentin, Oct-4, E-cadtherin, Nanog, Bax and BcL2 and the reference gene β-actin were designed using Primer-3 software and the list of forward and reverse primers were shown in Table 2. RT-qPCR was performed using SYBR green mix and the relative expression of mRNA was measured using the comparative Ct (Δ Ct) and the data was expressed as Mean ± SEM. RT-qPCR was performed in triplicates in each biological repeats.

1.7. Molecular docking protocol

The three-dimensional protein templates of BcL2 (ID: 4LVT) ⁶are retrieved from the protein data bank (https://www.rcsb.org/) and prepared for docking by protein preparation

wizard. The co-crystallized ligand sites are employed as a druggable target for the current naturally inspired analogues. The chemical structures of ligands are sketched in 3D and prepared by Ligprep and their energies are minimized by macromodel. The standard docking protocol of Glide is employed for current molecular interaction analysis. The result interpretations are made by Academic Maestro 12.2 panel.

1.8. Statistical analysis

Each experiment was carried out at least triplicate and the mean value was calculated as means \pm SD. Statistical analysis involved use of the Graphpad Prism version 9 and to determine the significant difference in the anticancer activity of the bergenin derivatives the Duncan's multiple range tests at a level of p < 0.05 was used.

Table S1: List of forward and reverse primers used for gene expression studies.

N o	Gene	Forward primer Sequence	Reverse Primer Sequence
1	h- BAK	5'GACGACATCAACCGACGCTATG-3'	5'GCTGGTGGCAATCTTGGTGAAG-3'
2	h- BCL- xL/2	5'ACTGTGCGTGGAAAGCGTAGAC -3'	5'GATCCAAGGCTCTAGGTGGTCA TTC-3'
3	h- Vim	5'AACAACCGACACTCCTACAAGA -3'	5'TGGTTGGATACTTGCTGGAAA-3'
4	h- Oct-4	5'ACATCAAAGCTCTGCAGAAAGA ACT -3'	5'- CTGAATACCTTCCCAAATAGAACC C-3' -3'
5	h- Nano g	5'-CTCCAACATCCTGAACCTCAGC -3'	5'- CGTCACACCATTGCTATTCTTCG- 3'
6	h-E- cad	5'AAGGGCTTGGATTTTGAGG	5'AGATGGGGGCTTCATTCAC-3'

Table S2the effect of bergenin derivatives on cell cycle arrest of CAL27 cells

Name of the compound	G0/G1	S	G2/M
Control	76.4±1.5	3.7±0.45	11.9±0.4
Doxorubicin	61.3±2.3	4.1±0.3	34.7±1.2
5a (16μM)	85.2+2.2	2.2±0.4	12.7±0.6
5a (32μM)	86.5±1.5	3.2±0.2	9.6±0.4
5c (10μM)	88.4±2.1	3.0±0.5	10.8±0.5
5c (34μM)	87.5±2.5	4.2±0.6	11.1±0.8
$10f(31.5\mu M)$	85.6±1.8	3.8±1.2	11.70.6
10f (63μM)	81.7±1.8	3.3±0.7	15.6±0.3
13ο (21 μM)	83.3±0.5	3.7±0.8	12.7±0.9
13ο (42 μM)	83.6±0.4	2.01±0.7	11.7±1.3

Table S3the effect of bergenin derivatives on cell cycle arrest of SCC09 cells

Name of the compound	G0/G1	S	G2/M
Control	71.2±1.1	15.2±1.2	14.7±0.65
Doxorubicin	30±2.2	16.6±0.7	56.2±0.6
5a (16μM)	71.5±0.9	16.3±0.7	10.8±0.9
5a (32μM)	78±0.87	12.2±0.5	10.3±0.7
5c (10μM)	71.5±2.1	16.2±0.9	12.1±0.4
5c (34μM)	74±0.6	12.8±0.4	10.5±0.6
10f (31.5μM)	77.1±1.2	11.5±1.2	11.8±0.5
10f (63μM)	86.2±1.7	5.1±6	10±0.3

 Table S4the effect of bergenin derivatives on apoptosis of CAL27 cells

Name of the compound	Early apoptosis	Late apoptosis	Necrotic
Control	0.1±0.05	0.1±0.07	0
Doxorubicin	0.8±0.1	59±0.67	23±0.9
5a (16μM)	2.7±0.3	2.2±0.4	0.9 ± 0.05
5a (32μM)	2.8±0.4	4.4±0.5	1.8±0.4
5c (10μM)	1.2±0.0.3	2.2±0.6	2.3±0.4
5c (34μM)	2.2±0.4	4.8±0.3	4.4±0.52
$10f(31.5\mu M)$	8.3±0.8	2.9±0.4	0.4 ± 0.22
10f (63μM)	11.7±0.3	4.5±0.5	3.2±0.29
13ο (21 μM)	1.1±0.4	0.7 ± 0.1	0.9±0.3
13ο (42 μM)	1.7±0.1	1.6±0.2	1.8±0.6

Table S5 the effect of bergenin derivatives on apoptosis of SCC09 cells

Name of the compound	Early apoptosis	Late apoptosis	Necrotic
Control	2.7±0.4	1.2±0.2	0.1±0.05
Doxorubicin	0.3±0.07	42±0.8	53.2±1.5
5a (16μM)	6±0.5	40.8±0.32	9.4±0.8
5a (32μM)	6.1±0.4	18.2±0.7	34.3±0.7
5c (10μM)	29.2±0.8	43±0.8	1.5±0.08
5c (34μM)	32.7±1.4	47.2±2.1	1.8±0.2
10f (31.5μM)	10.3±0.3	15.1±0.7	38.2±0.7
10f (63μM)	7.8±0.4	12.6±1.3	27.2±0.8

Figure legends

- Fig S1: ¹H NMR SPECTRUM OF COMPOUND **5**
- Fig S2: ¹³C NMR SPECTRUM OF COMPOUND **5**
- Fig S3: HRESIMS SPECTRUM OF COMPOUND 5
- Fig S4:1H NMR SPECTRUM OF COMPOUND 4a
- Fig S5: ¹³C NMR SPECTRUM OF COMPOUND 4a
- Fig S6: HRESIMS SPECTRUM OF COMPOUND 4a
- Fig S7: ¹H NMR SPECTRUM OF COMPOUND 5a
- Fig S8: ¹³C NMR SPECTRUM OF COMPOUND 5a
- Fig S9: HRESIMS SPECTRUM OF COMPOUND 5a
- Fig S10: ¹H NMR SPECTRUM OF COMPOUND 4b
- Fig S11: ¹³C NMR SPECTRUM OF COMPOUND **4b**
- Fig S12: HRESIMS SPECTRUM OF COMPOUND 4b
- Fig S13: ¹H NMR SPECTRUM OF COMPOUND **5b**
- Fig S14: ¹³C NMR SPECTRUM OF COMPOUND **5b**
- Fig S15: HRESIMS SPECTRUM OF COMPOUND 5b
- Fig S16: ¹H NMR SPECTRUM OF COMPOUND **4c**
- Fig S17: ¹³C NMR SPECTRUM OF COMPOUND **4c**
- Fig S18: HRESIMS SPECTRUM OF COMPOUND 4c
- Fig S19: ¹H NMR SPECTRUM OF COMPOUND **5c**
- Fig S20: ¹³C NMR SPECTRUM OF COMPOUND **5c**
- Fig S21: HRESIMS SPECTRUM OF COMPOUND 5c
- Fig S22: ¹H NMR SPECTRUM OF COMPOUND 4d
- Fig S23: ¹³C NMR SPECTRUM OF COMPOUND 4d

- Fig S24: HRESIMS SPECTRUM OF COMPOUND 4d
- Fig S25: ¹H NMR SPECTRUM OF COMPOUND **5d**
- Fig S26: ¹³C NMR SPECTRUM OF COMPOUND **5d**
- Fig S27: HRESIMS SPECTRUM OF COMPOUND 5d
- Fig S28: ¹H NMR SPECTRUM OF COMPOUND 4e
- Fig S29: NMR SPECTRUM OF COMPOUND 4e
- Fig S30: HRESIMS SPECTRUM OF COMPOUND 4e
- Fig S31: ¹H NMR SPECTRUM OF COMPOUND **5e**
- Fig S32: ¹³C NMR SPECTRUM OF COMPOUND **5e**
- Fig S33: HRESIMS SPECTRUM OF COMPOUND 5e
- Fig S34: ¹H NMR SPECTRUM OF COMPOUND 9a
- Fig S35: ¹³C NMR SPECTRUM OF COMPOUND 9a
- Fig S36: HRESIMS SPECTRUM OF COMPOUND 9a
- Fig S37: ¹H NMR SPECTRUM OF COMPOUND 10a
- Fig S38: ¹³C NMR SPECTRUM OF COMPOUND **10a**
- Fig S39: HRESIMS SPECTRUM OF COMPOUND 10a
- Fig S40:1H NMR SPECTRUM OF COMPOUND 9b
- Fig S41: ¹³C NMR SPECTRUM OF COMPOUND **9b**
- Fig S42: HRESIMS SPECTRUM OF COMPOUND 9b
- Fig S43: ¹H NMR SPECTRUM OF COMPOUND 10b
- Fig S44: ¹³C NMR SPECTRUM OF COMPOUND 10b
- Fig S45: HRESIMS SPECTRUM OF COMPOUND 10b
- Fig S46: ¹H NMR SPECTRUM OF COMPOUND 10c
- Fig S47: ¹³C NMR SPECTRUM OF COMPOUND 10c

- Fig S48: HRESIMS SPECTRUM OF COMPOUND 10c
- Fig S49: ¹H NMR SPECTRUM OF COMPOUND **10d**
- Fig S50: ¹³C NMR SPECTRUM OF COMPOUND 10d
- Fig S51: HRESIMS SPECTRUM OF COMPOUND 10d
- Fig S52: ¹H NMR SPECTRUM OF COMPOUND **9e**
- Fig S53: ¹³C NMR SPECTRUM OF COMPOUND 9e
- Fig S54: HRESIMS SPECTRUM OF COMPOUND 9e
- Fig S55: ¹H NMR SPECTRUM OF COMPOUND 10e
- Fig S56: ¹³C NMR SPECTRUM OF COMPOUND **10e**
- Fig S57: HRESIMS SPECTRUM OF COMPOUND 10e
- Fig S58: ¹H NMR SPECTRUM OF COMPOUND 9f
- Fig S59: ¹³C NMR SPECTRUM OF COMPOUND **9f**
- Fig S60: HRESIMS SPECTRUM OF COMPOUND 9f
- Fig S61: ¹H NMR SPECTRUM OF COMPOUND **10f**
- Fig S62: ¹³C NMR SPECTRUM OF COMPOUND **10f**
- Fig S63: HRESIMS SPECTRUM OF COMPOUND 10f
- Fig S64: ¹H NMR SPECTRUM OF COMPOUND **9g**
- Fig S65: ¹³C NMR SPECTRUM OF COMPOUND **9g**
- Fig S66: HRESIMS SPECTRUM OF COMPOUND 9g
- Fig S67: ¹H NMR SPECTRUM OF COMPOUND **10g**
- Fig S68: ¹³C NMR SPECTRUM OF COMPOUND **10g**
- Fig S69: ¹HRESIMS SPECTRUM OF COMPOUND **10g**
- Fig S70: ¹H NMR SPECTRUM OF COMPOUND **9h**
- Fig S71: ¹³C NMR SPECTRUM OF COMPOUND 9h

- Fig S72: HRESIMS SPECTRUM OF COMPOUND 9h
- Fig S73: ¹H NMR SPECTRUM OF COMPOUND 10h
- Fig S74: ¹³C NMR SPECTRUM OF COMPOUND **10h**
- Fig S75: HRESIMS SPECTRUM OF COMPOUND 10h
- Fig S76: ¹H NMR SPECTRUM OF COMPOUND 9i
- Fig S77: ¹³C NMR SPECTRUM OF COMPOUND **9i**
- Fig S78: HRESIMS SPECTRUM OF COMPOUND 9i
- Fig S79: ¹H NMR SPECTRUM OF COMPOUND 10i
- Fig S80: ¹³C NMR SPECTRUM OF COMPOUND **10i**
- Fig S81: HRESIMS SPECTRUM OF COMPOUND 10i
- Fig S82: ¹H NMR SPECTRUM OF COMPOUND **13a**
- Fig S83: ¹³C NMR SPECTRUM OF COMPOUND **13a**
- Fig S84: RESIMS SPECTRUM OF COMPOUND 13a
- Fig S85: H NMR SPECTRUM OF COMPOUND 13b
- Fig S86: ¹³C NMR SPECTRUM OF COMPOUND **13b**
- Fig S87: HRESIMS SPECTRUM OF COMPOUND 13b
- Fig S88: ¹H NMR SPECTRUM OF COMPOUND **13c**
- Fig S89: ¹³C NMR SPECTRUM OF COMPOUND 13c
- Fig S90: HRESIMS SPECTRUM OF COMPOUND 13c
- Fig S91: ¹H NMR SPECTRUM OF COMPOUND **13d**
- Fig S92: ¹³C NMR SPECTRUM OF COMPOUND 13d
- Fig S93: HRESIMS SPECTRUM OF COMPOUND 13d
- Fig S94: ¹H NMR SPECTRUM OF COMPOUND **13e**
- Fig S95: ¹³C NMR SPECTRUM OF COMPOUND **13e**

- Fig S96: HRESIMS SPECTRUM OF COMPOUND 13e
- Fig S97: ¹H NMR SPECTRUM OF COMPOUND **13f**
- Fig S98: ¹³C NMR SPECTRUM OF COMPOUND **13f**
- Fig S99: HRESIMS SPECTRUM OF COMPOUND 13f
- Fig S100: ¹H NMR SPECTRUM OF COMPOUND 13g
- Fig S101: ¹³C NMR SPECTRUM OF COMPOUND 13g
- Fig S102: HRESIMS SPECTRUM OF COMPOUND 13g
- Fig S103: ¹H NMR SPECTRUM OF COMPOUND 13h
- Fig S104: ¹³C NMR SPECTRUM OF COMPOUND **13h**
- Fig S105: HRESIMS SPECTRUM OF COMPOUND 13h
- Fig S106: ¹H NMR SPECTRUM OF COMPOUND 13i
- Fig S107: ¹³C NMR SPECTRUM OF COMPOUND **13i**
- Fig S108: HRESIMS SPECTRUM OF COMPOUND 13i
- Fig S109: ¹H NMR SPECTRUM OF COMPOUND 13j
- Fig S110: ¹³C NMR SPECTRUM OF COMPOUND **13**j
- Fig S111: HRESIMS SPECTRUM OF COMPOUND 13j
- Fig S112: ¹H NMR SPECTRUM OF COMPOUND 13k
- Fig S113: ¹³C NMR SPECTRUM OF COMPOUND 13k
- Fig S114: HRESIMS SPECTRUM OF COMPOUND 13k
- Fig S115: ¹H NMR SPECTRUM OF COMPOUND 13I
- Fig S116: ¹³C NMR SPECTRUM OF COMPOUND **131**
- Fig S117: HRESIMS SPECTRUM OF COMPOUND 131
- Fig S118: ¹H NMR SPECTRUM OF COMPOUND 13m
- Fig S119: ¹³C NMR SPECTRUM OF COMPOUND **13m**

- Fig S120: HRESIMS SPECTRUM OF COMPOUND 13m
- Fig S121: ¹H NMR SPECTRUM OF COMPOUND **13n**
- Fig S122: ¹³C NMR SPECTRUM OF COMPOUND **13n**
- Fig S123 HRESIMS SPECTRUM OF COMPOUND 13n
- Fig S124: ¹H NMR SPECTRUM OF COMPOUND **130**
- Fig S125: ¹³C NMR SPECTRUM OF COMPOUND **130**
- Fig S126: HRESIMS SPECTRUM OF COMPOUND 130

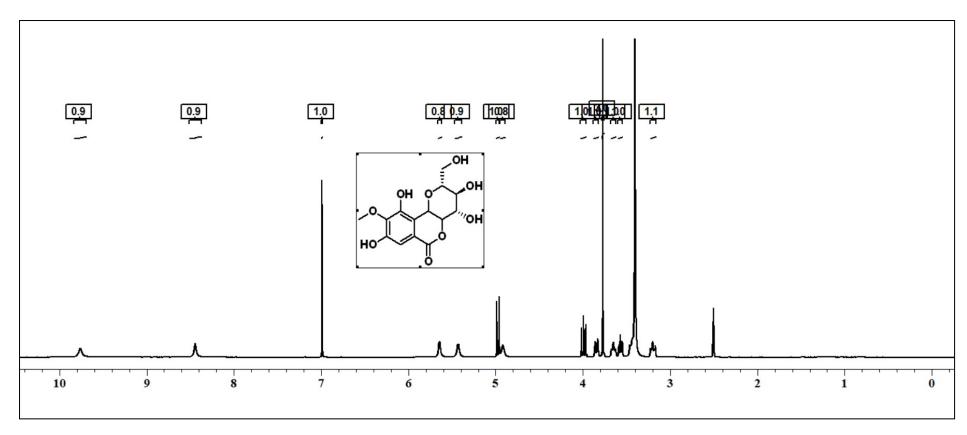


Fig S1: ¹H NMR SPECTRUM OF COMPOUND **1**(400 MHz, DMSO-d₆)

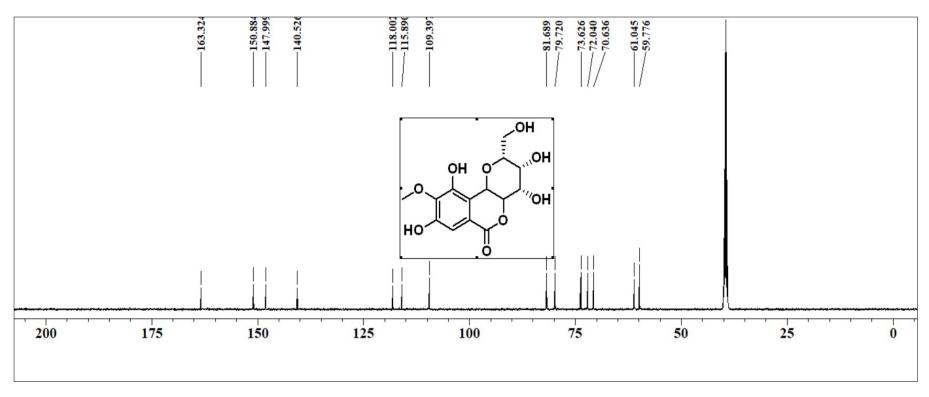


Fig S2: ¹³C NMR SPECTRUM OF COMPOUND **1**(125 MHz, DMSO-d₆)

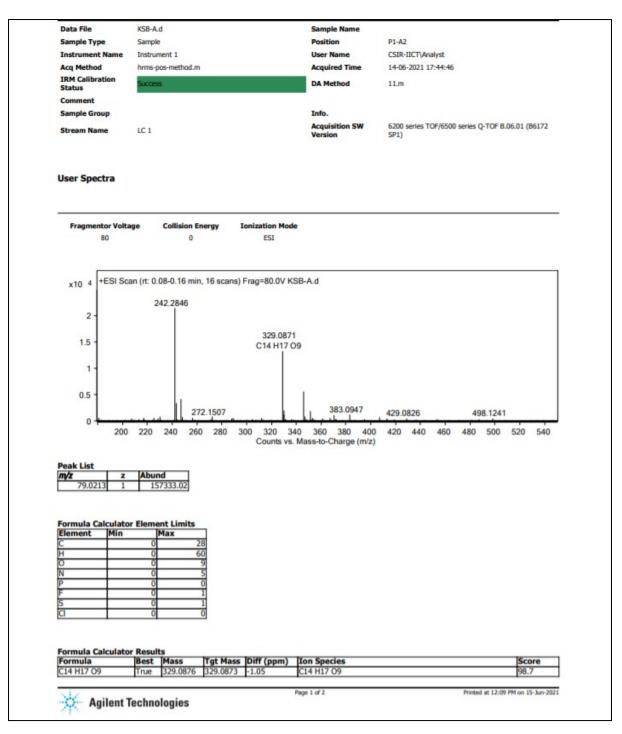


Fig S3: HRESIMS SPECTRUM OF COMPOUND 1

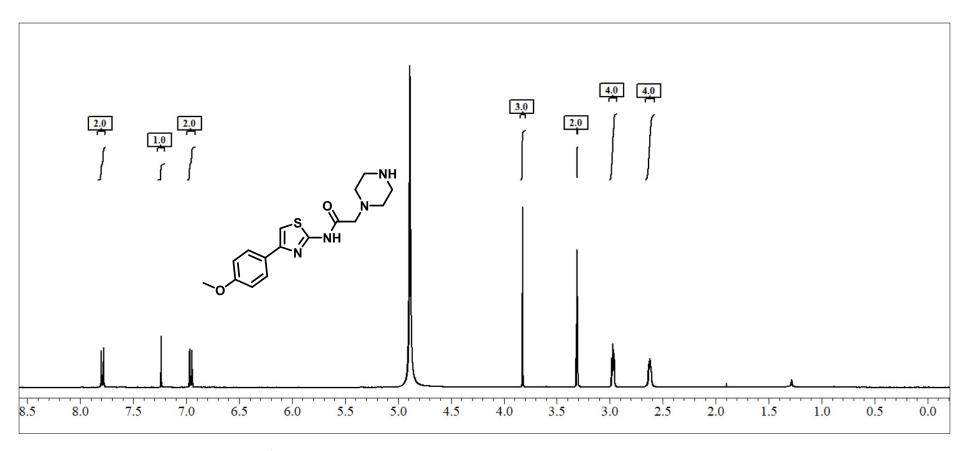


Fig S4: ¹H NMR SPECTRUM OF COMPOUND **4a** (400 MHz, CD₃OD)

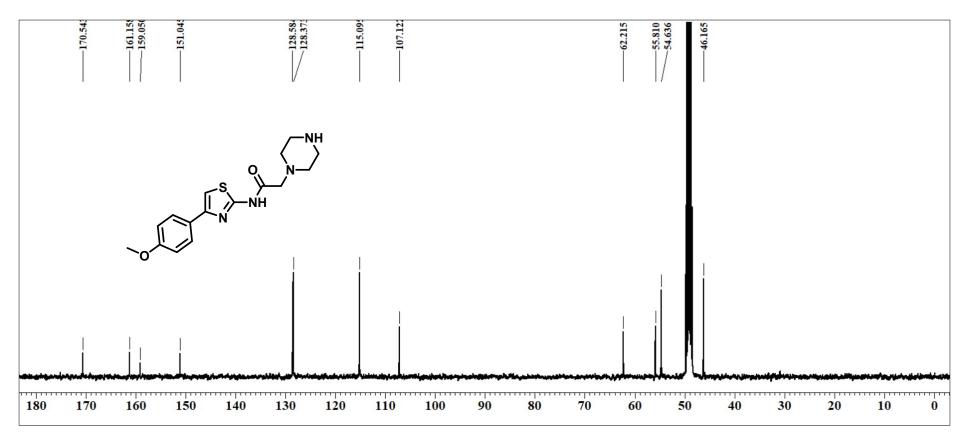


Fig S5:¹³C NMR SPECTRUM OF COMPOUND 4a (100 MHz, CD₃OD)

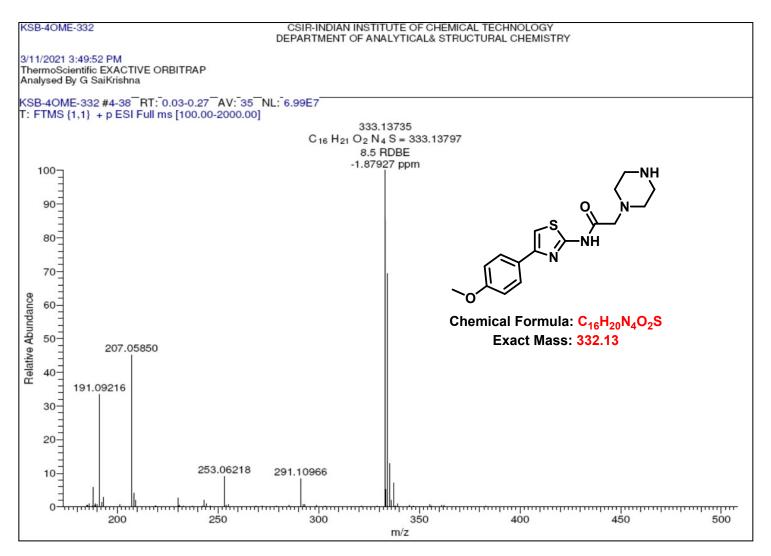


Fig S6:HRESIMS SPECTRUM OF COMPOUND 4a

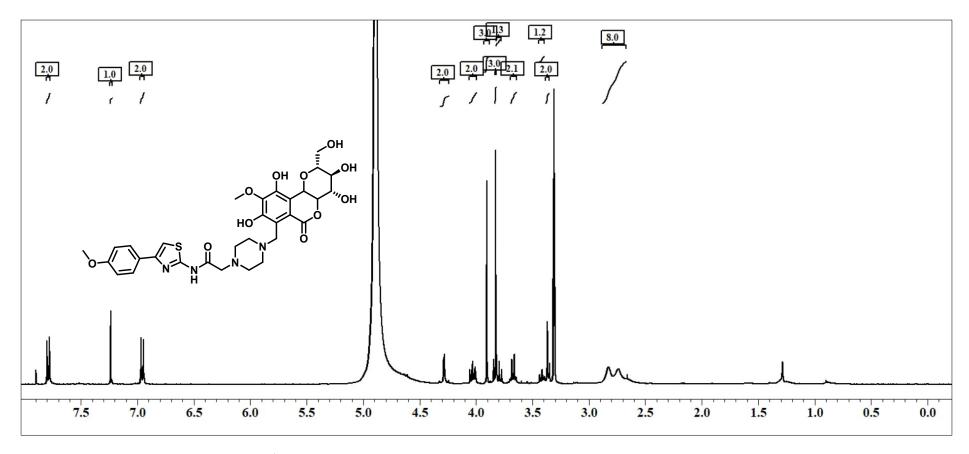


Fig S7: ¹H NMR SPECTRUM OF COMPOUND **5a** (400 MHz, CD₃OD)

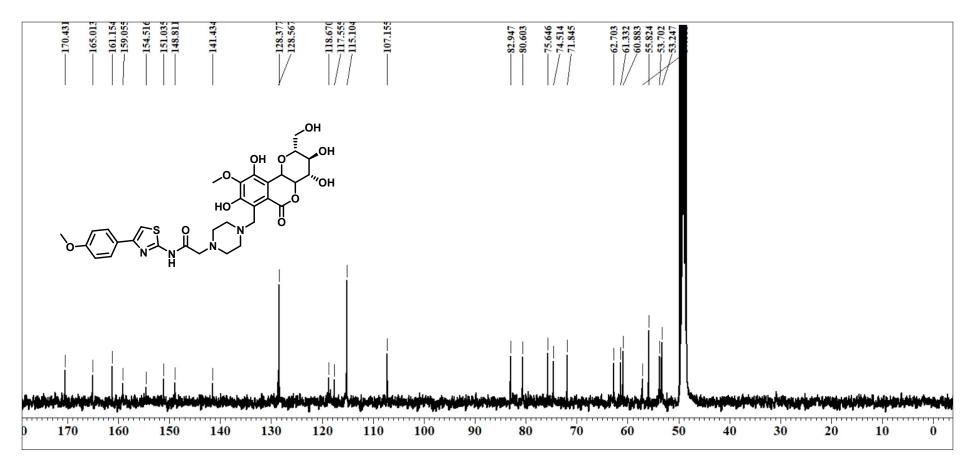


Fig S8: ¹³C NMR SPECTRUM OF COMPOUND **5a** (100 MHz, CD₃OD)

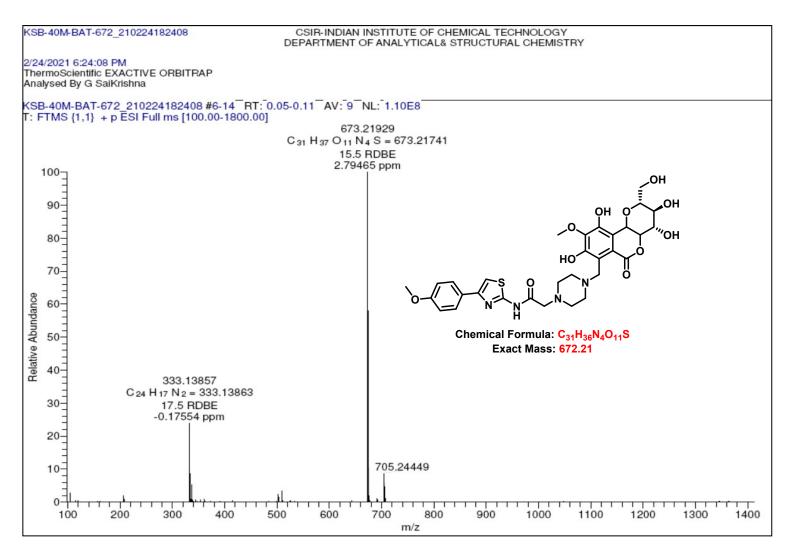


Fig S9: HRESIMS SPECTRUM OF COMPOUND 5a

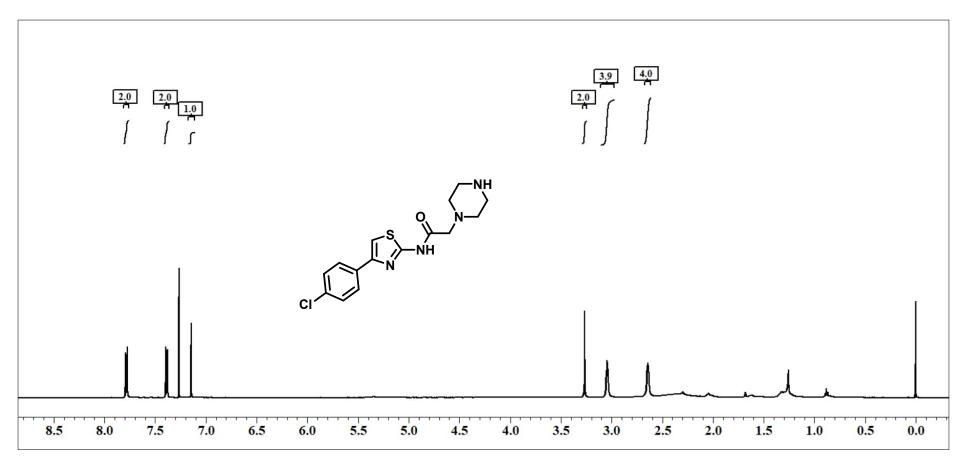


Fig S10: ¹H NMR SPECTRUM OF COMPOUND **4b**(400 MHz, CDCl₃)

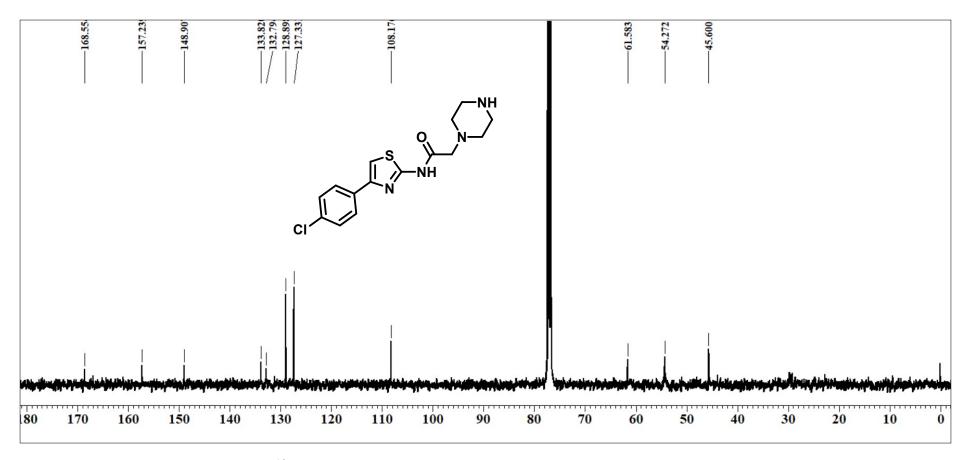


Fig S11: ¹³C NMR SPECTRUM OF COMPOUND **4b** (100 MHz, CDCl₃)

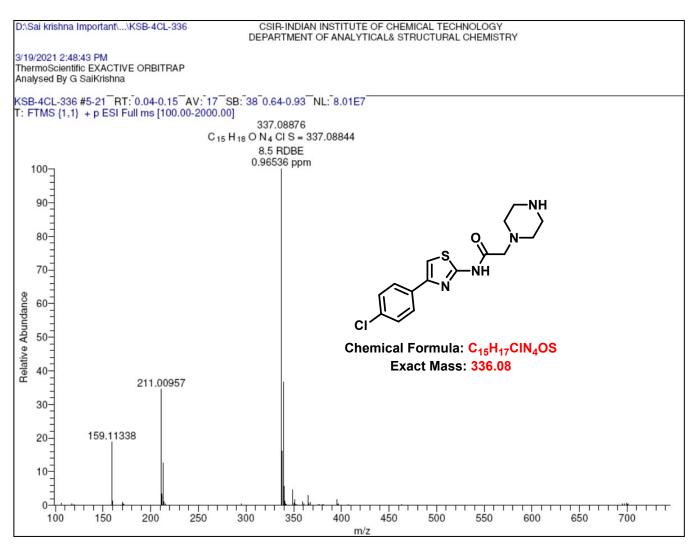


Fig S12: HRESIMS SPECTRUM OF COMPOUND **4b**

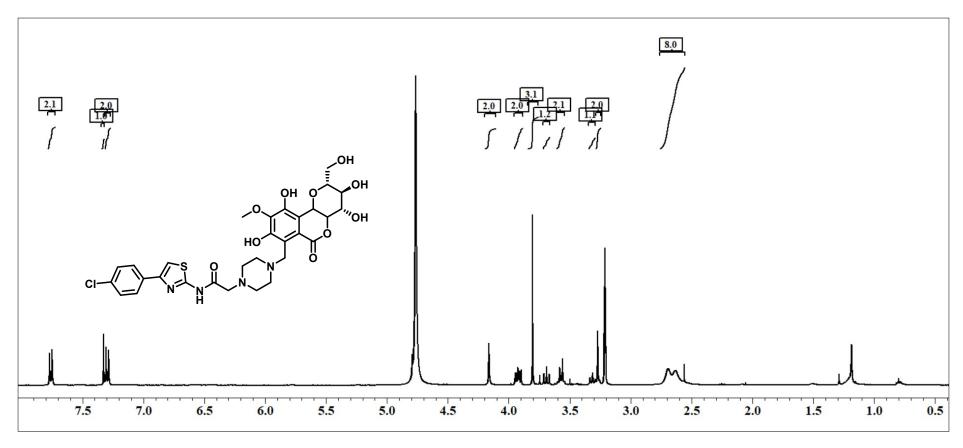


Fig S13: ¹H NMR SPECTRUM OF COMPOUND **5b**(400 MHz, CD₃OD)

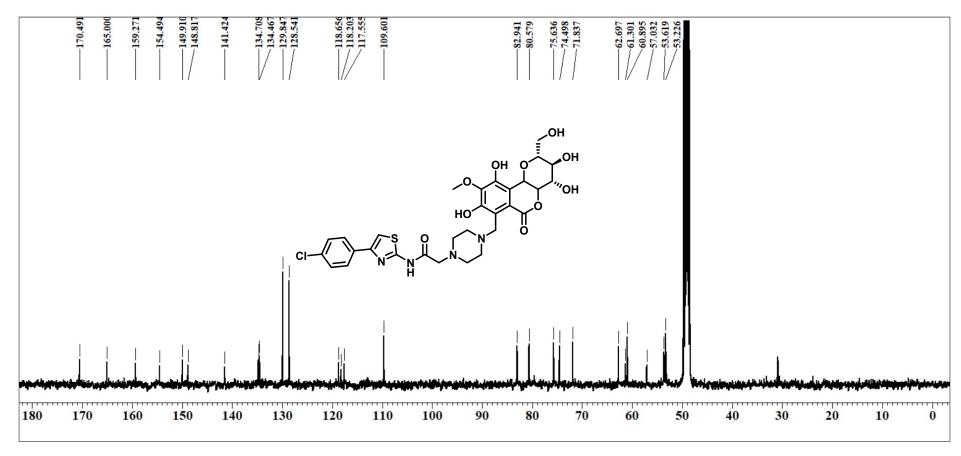


Fig S14: ¹³C NMR SPECTRUM OF COMPOUND **5b** (100 MHz, CD₃OD)

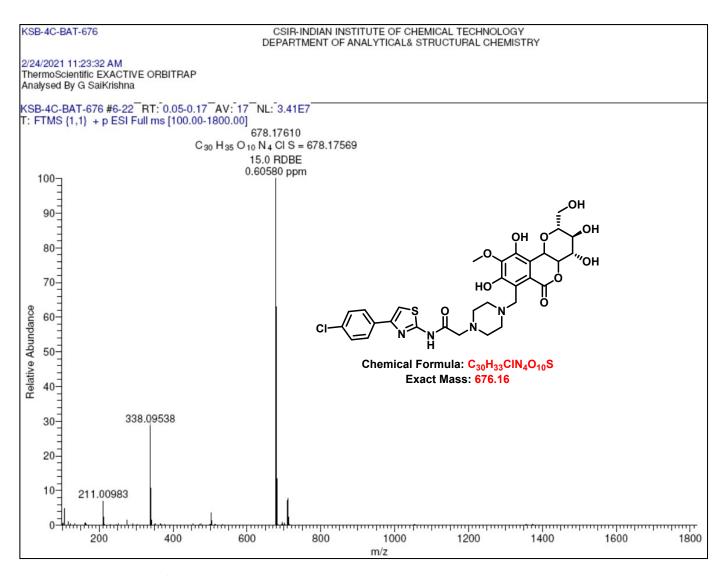


Fig S15: HRESIMS SPECTRUM OF COMPOUND 5b

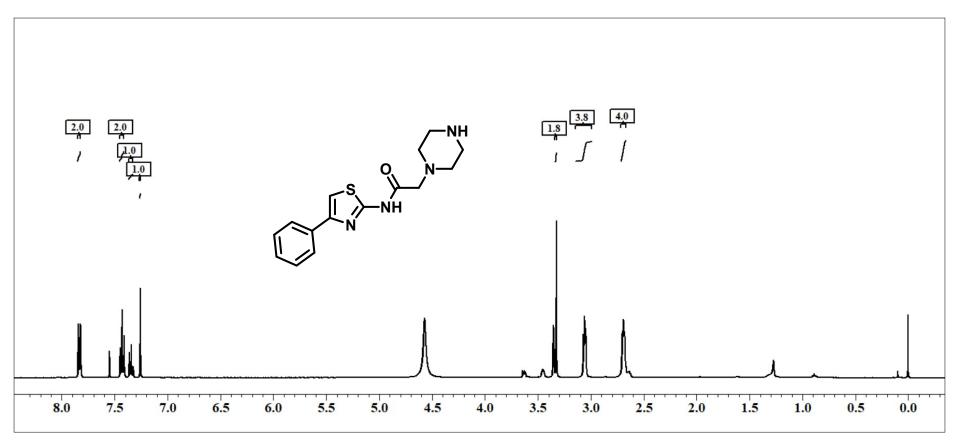


Fig S16: ¹H NMR SPECTRUM OF COMPOUND **4c**(400 MHz, CD₃OD+CDCl₃)

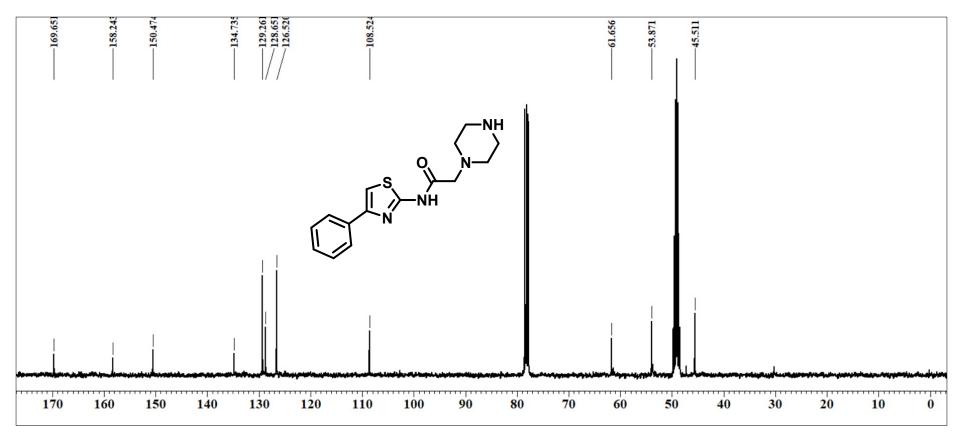


Fig S17: ¹³C NMR SPECTRUM OF COMPOUND **4c** (100 MHz, CD₃OD+CDCl₃)

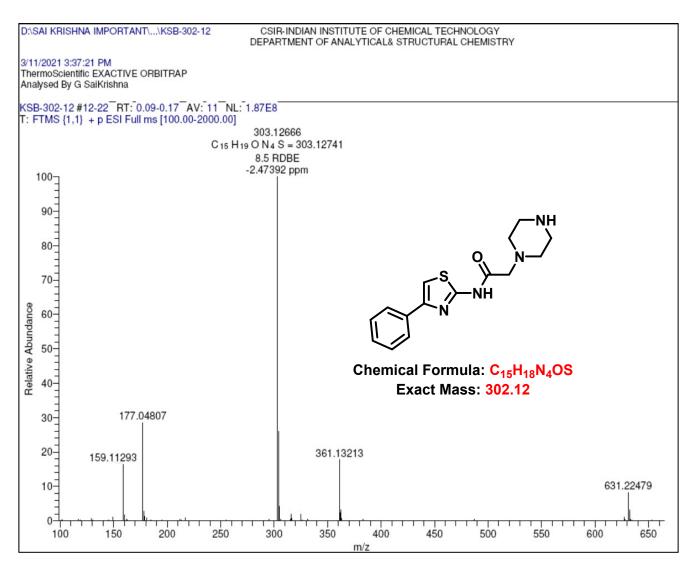


Fig S18: HRESIMS SPECTRUM OF COMPOUND 4c

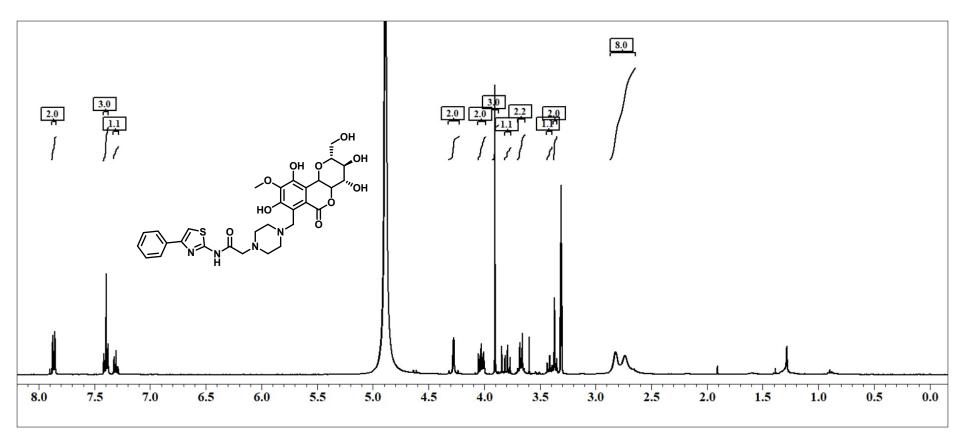


Fig S19: ¹H NMR SPECTRUM OF COMPOUND **5c**(400 MHz, CD₃OD)

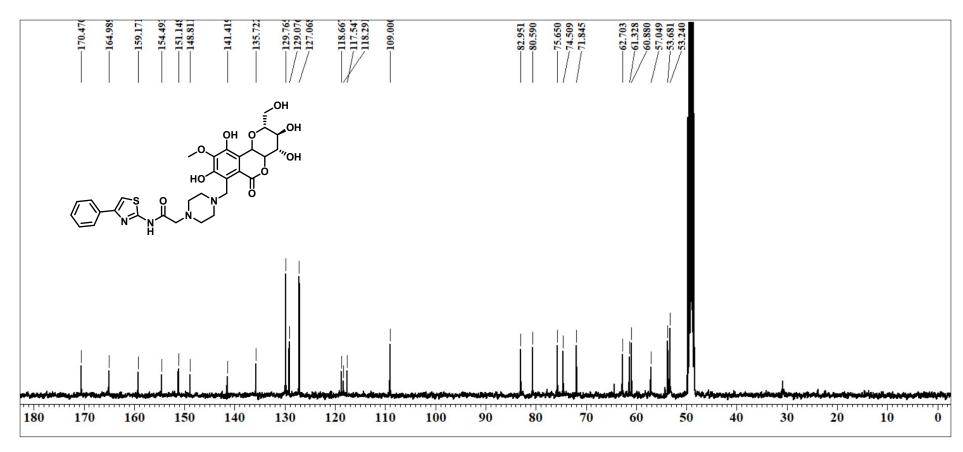


Fig S20: ¹³C NMR SPECTRUM OF COMPOUND **5c** (100 MHz, CD₃OD)

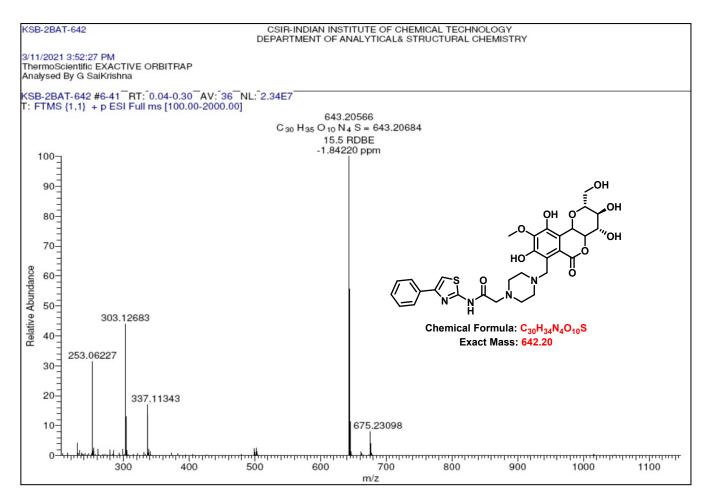


Fig S21: HRESIMS SPECTRUM OF COMPOUND **5c**

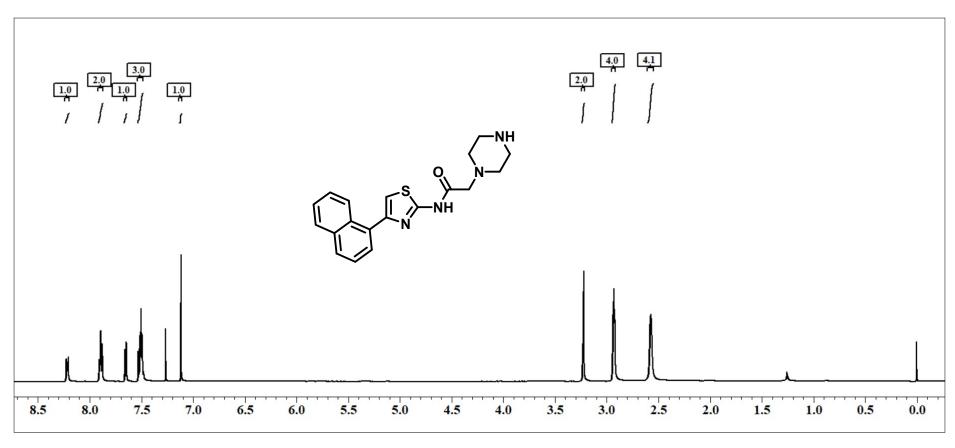


Fig S22: ¹H NMR SPECTRUM OF COMPOUND **4d**(500 MHz, CD₃OD)

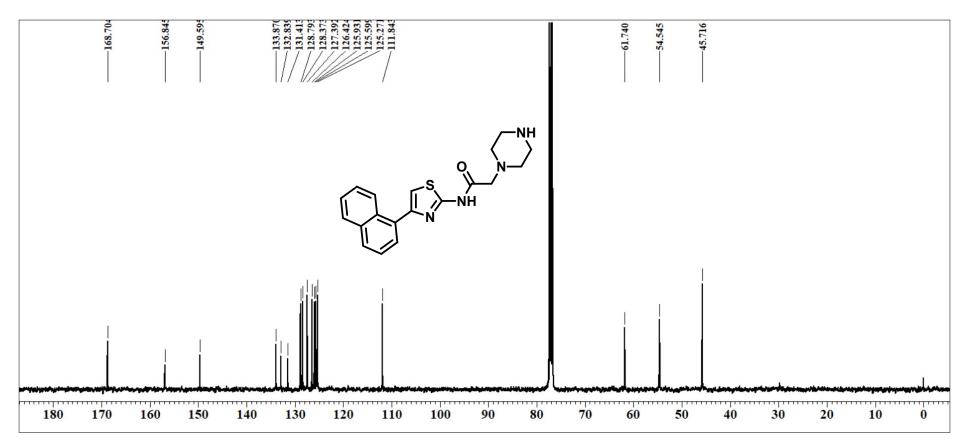


Fig S23: ¹³C NMR SPECTRUM OF COMPOUND **4d** (100 MHz, CDCl₃)

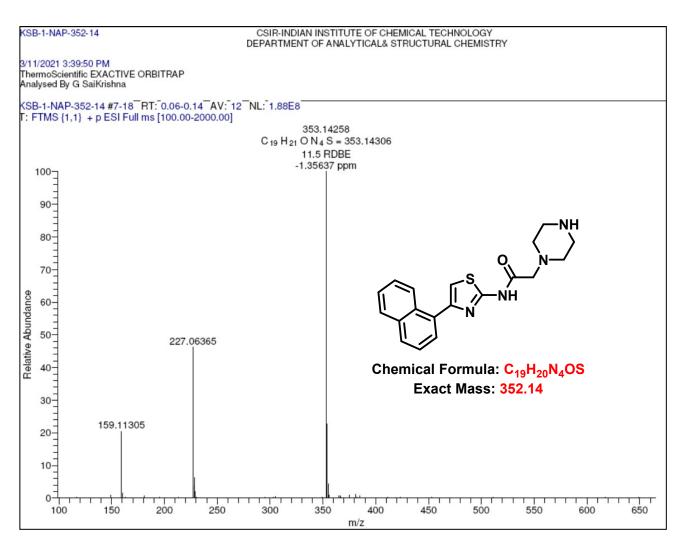


Fig S24: HRESIMS SPECTRUM OF COMPOUND 4d

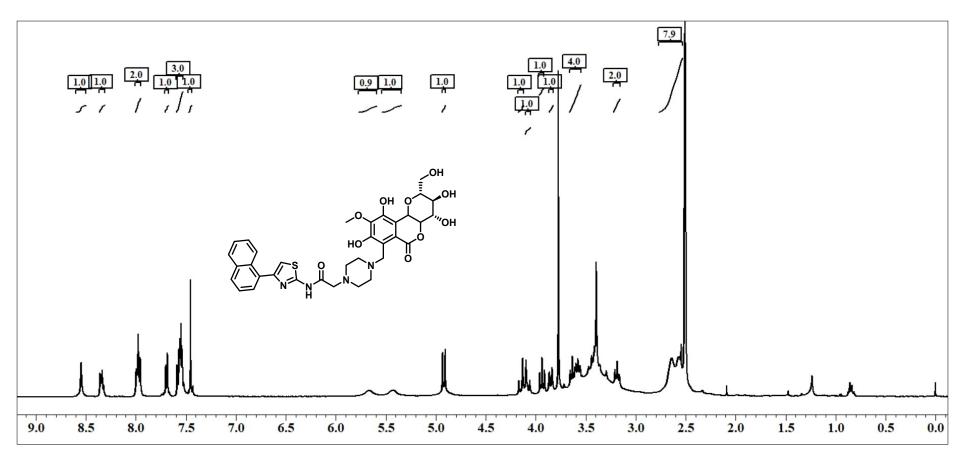


Fig S25: ¹H NMR SPECTRUM OF COMPOUND **5d**(400 MHz, DMSO-d₆)

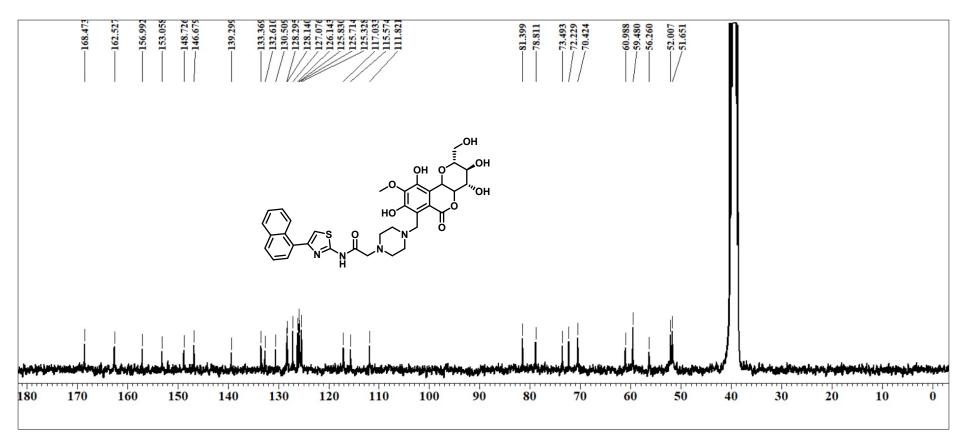


Fig S26: ¹³C NMR SPECTRUM OF COMPOUND **5d** (100 MHz, DMSO-d₆)

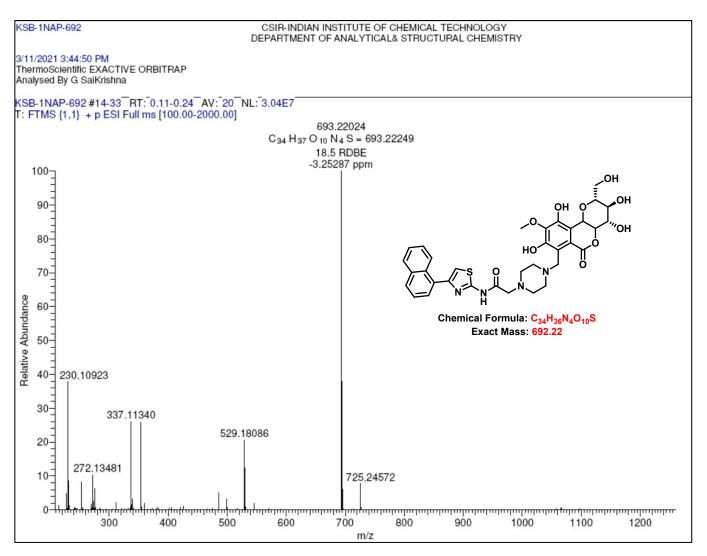


Fig S27: HRESIMS SPECTRUM OF COMPOUND 5d

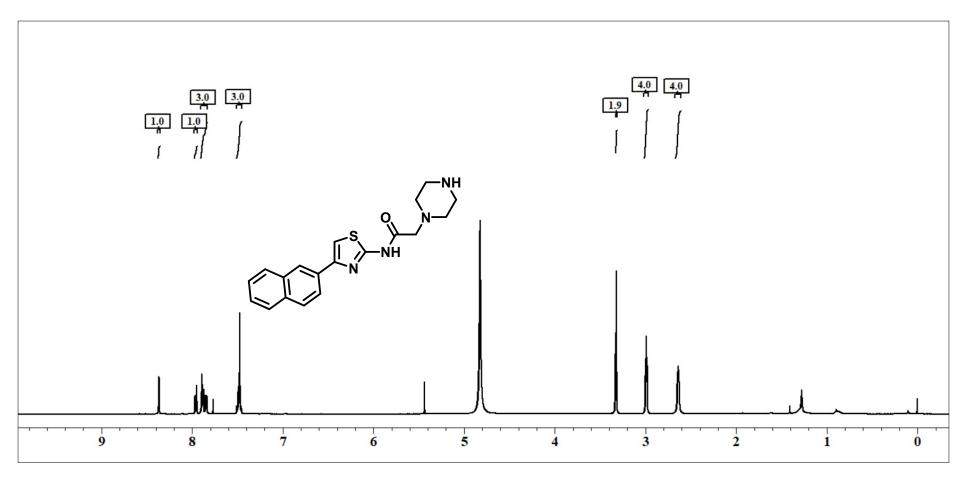


Fig S28: ¹H NMR SPECTRUM OF COMPOUND **4e**(500 MHz, CD₃OD+CDCl₃)

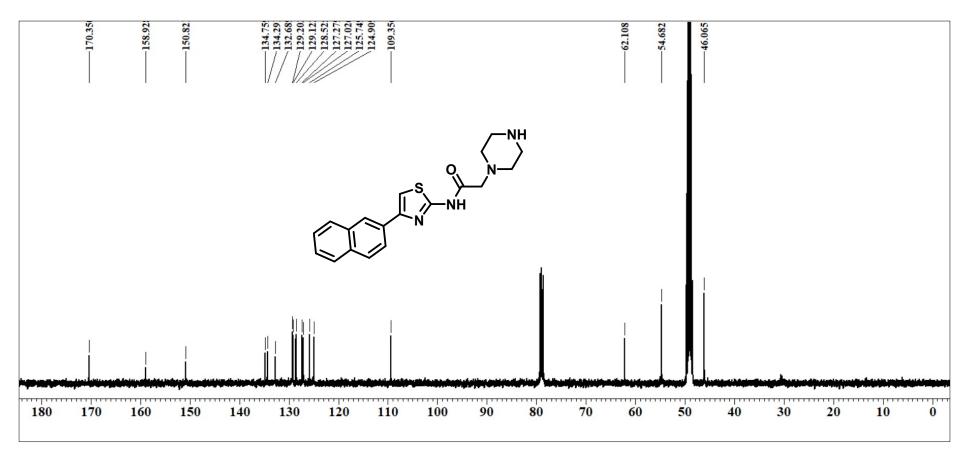


Fig S29: ¹³C NMR SPECTRUM OF COMPOUND **4e** (100 MHz, CD₃OD+CDCl₃)

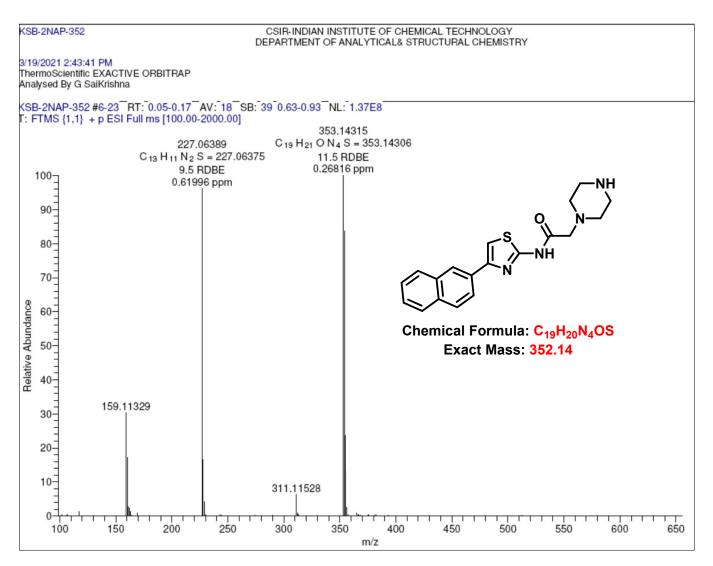


Fig S30: HRESIMS SPECTRUM OF COMPOUND 4e

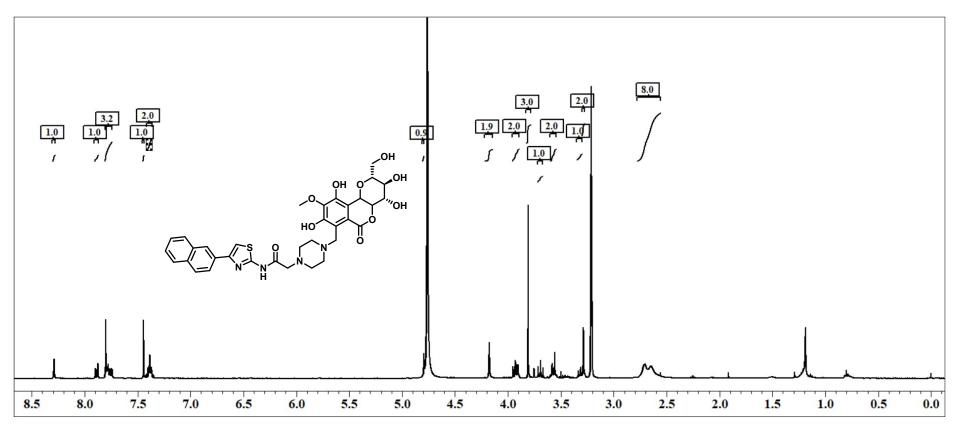


Fig S31: ¹H NMR SPECTRUM OF COMPOUND **5e**(400 MHz, CD₃OD)

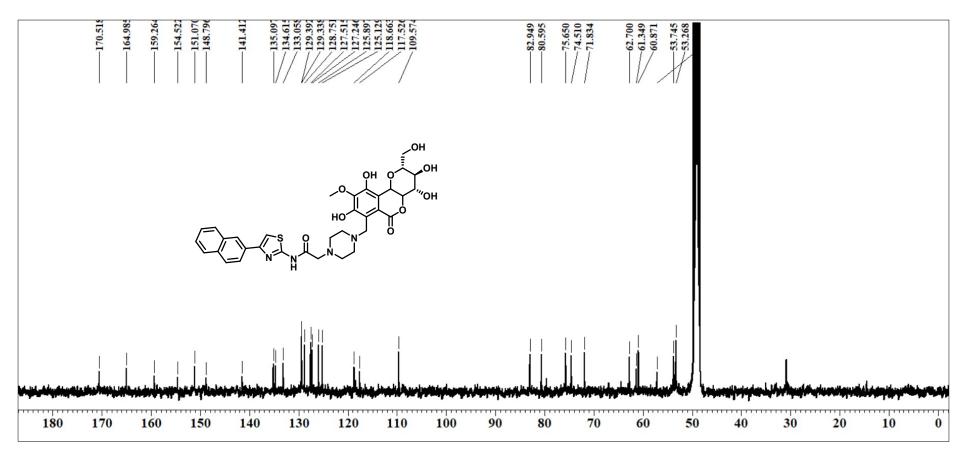


Fig S32: ¹³C NMR SPECTRUM OF COMPOUND **5e** (100 MHz, CD₃OD)

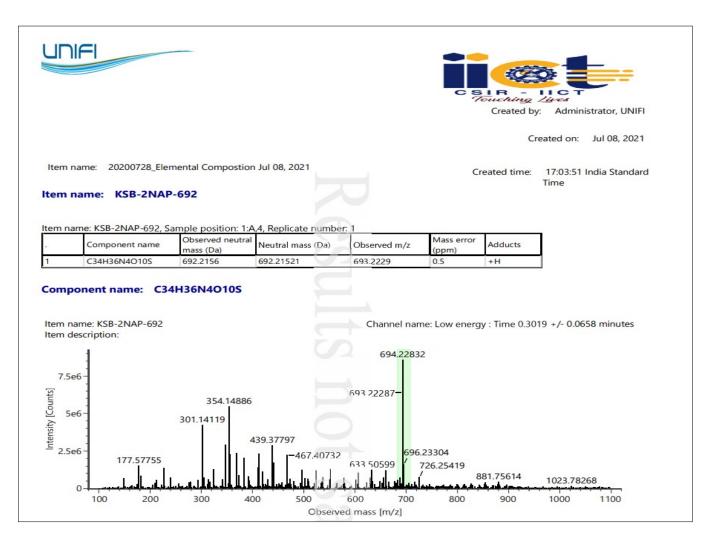


Fig S33: HRESIMS SPECTRUM OF COMPOUND ${\bf 5e}$

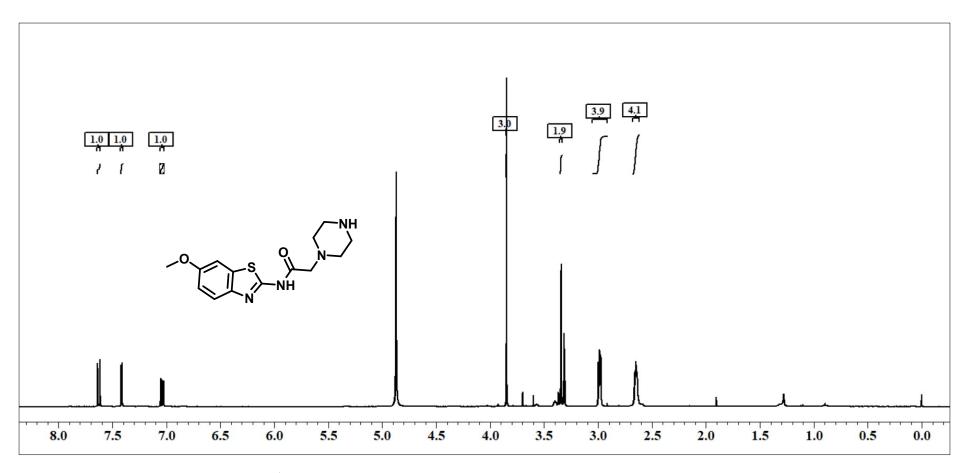


Fig S34: ¹H NMR SPECTRUM OF COMPOUND **9a**(400 MHz, CD₃OD)

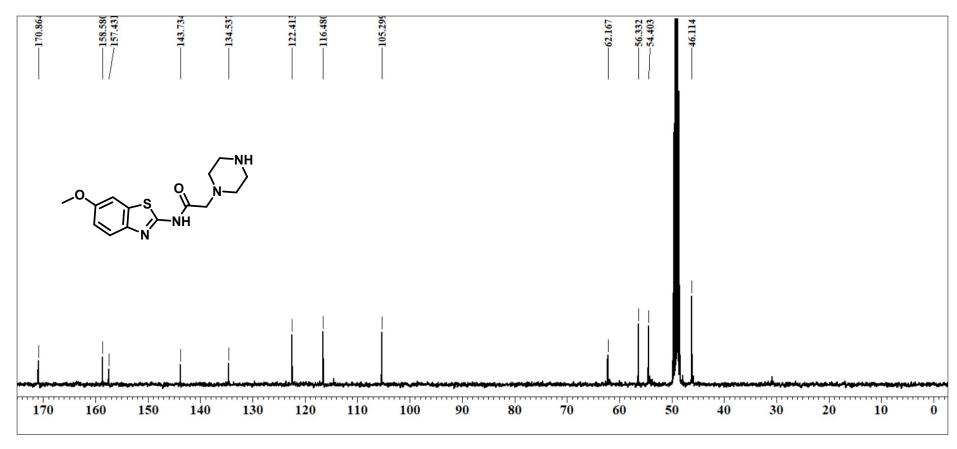


Fig S35: ¹³C NMR SPECTRUM OF COMPOUND **9a** (100 MHz, CD₃OD)

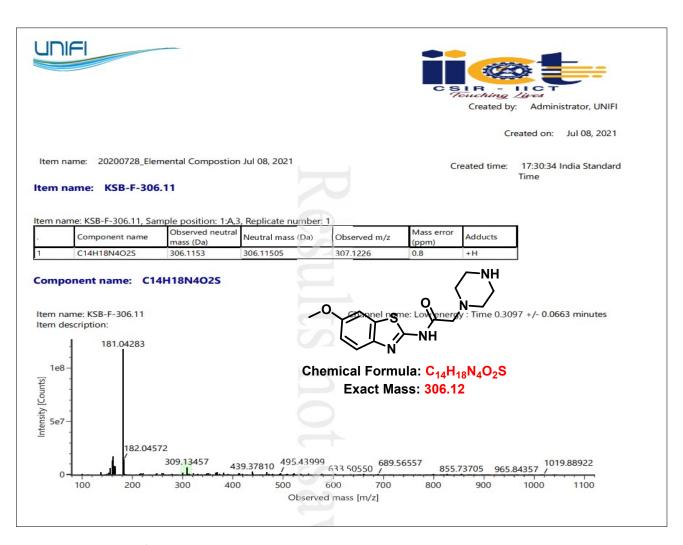


Fig S36: HRESIMS SPECTRUM OF COMPOUND 9a

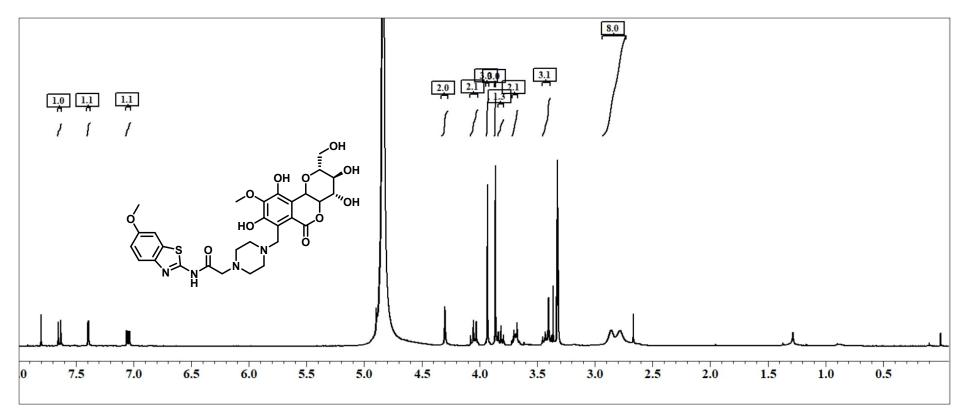


Fig S37: ¹H NMR SPECTRUM OF COMPOUND **10a** (400 MHz, CD₃OD+CDCl₃)

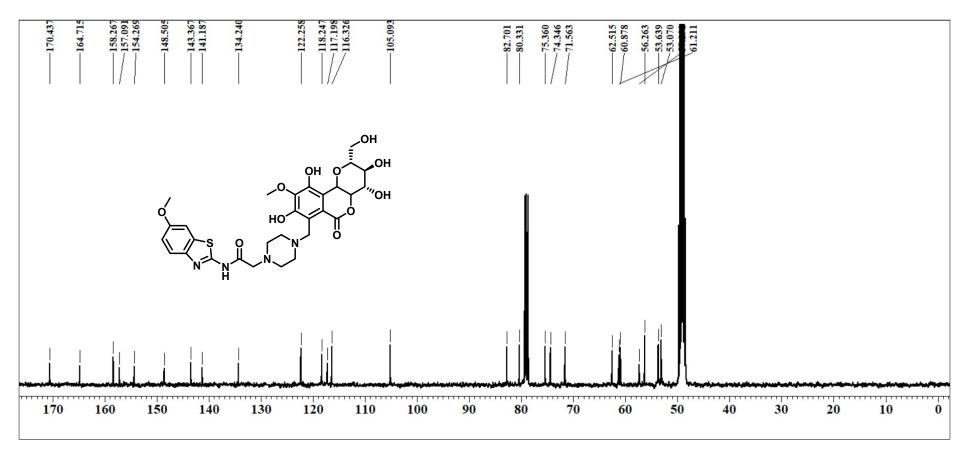


Fig S38: ¹³C NMR SPECTRUM OF COMPOUND **10a** (100 MHz, CD₃OD+CDCl₃)

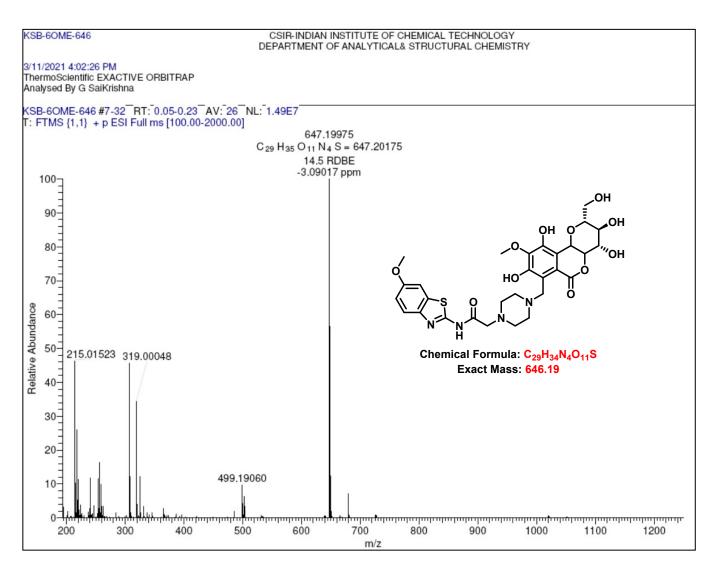


Fig S39: HRESIMS SPECTRUM OF COMPOUND 10a

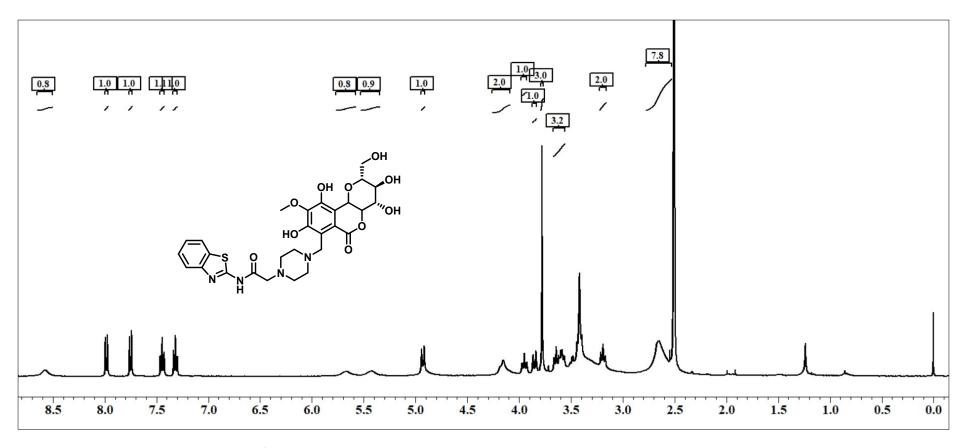


Fig S40: ¹H NMR SPECTRUM OF COMPOUND **10b**(400 MHz, DMSO-d₆)

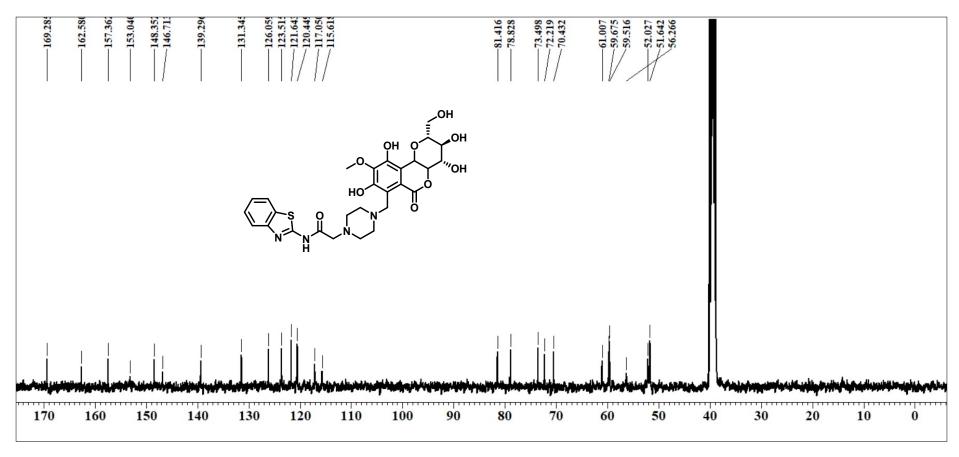


Fig S41: ¹³C NMR SPECTRUM OF COMPOUND **10b** (100 MHz, DMSO-d₆)

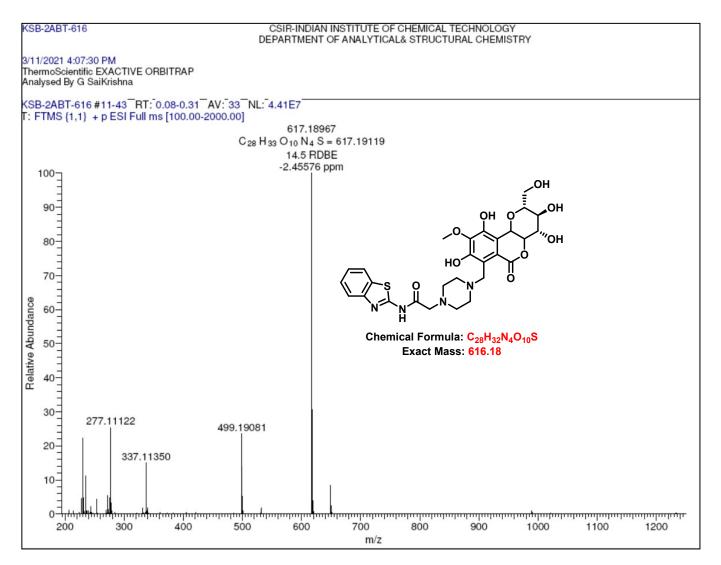


Fig S42: HRESIMS SPECTRUM OF COMPOUND 10b

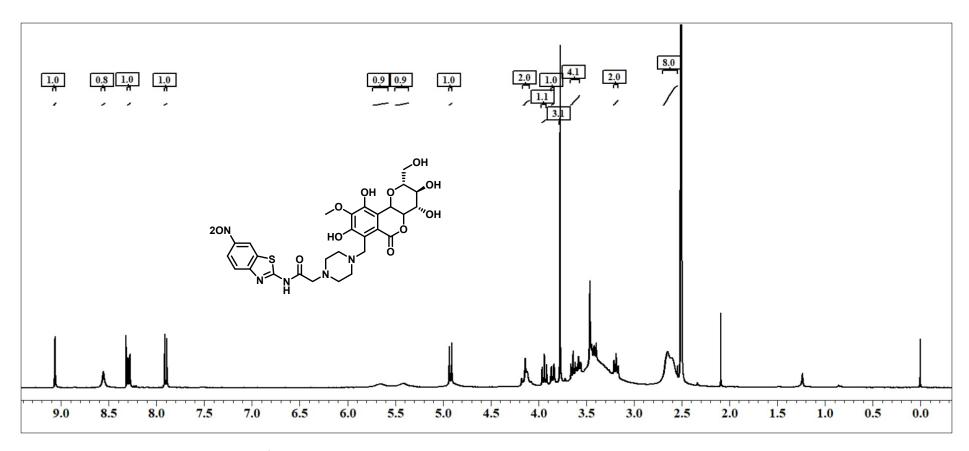


Fig S43: ¹H NMR SPECTRUM OF COMPOUND **10c**(400 MHz, DMSO-d₆)

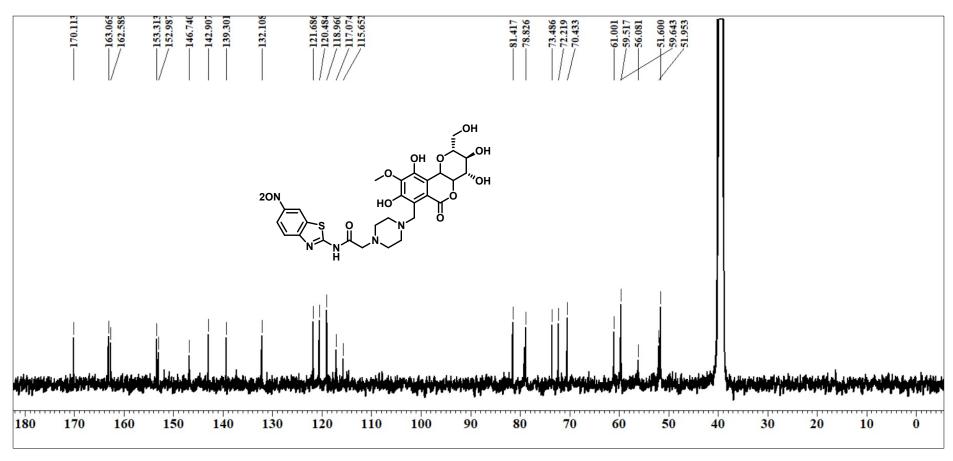


Fig S44: 13 C NMR SPECTRUM OF COMPOUND $\mathbf{10c}$ (100 MHz, DMSO- $\mathbf{d_6}$)

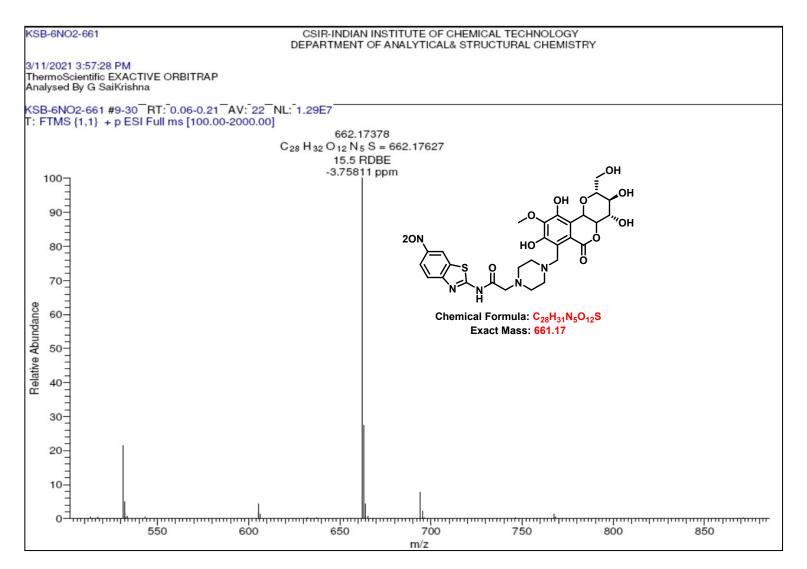


Fig S45: HRESIMS SPECTRUM OF COMPOUND 10c

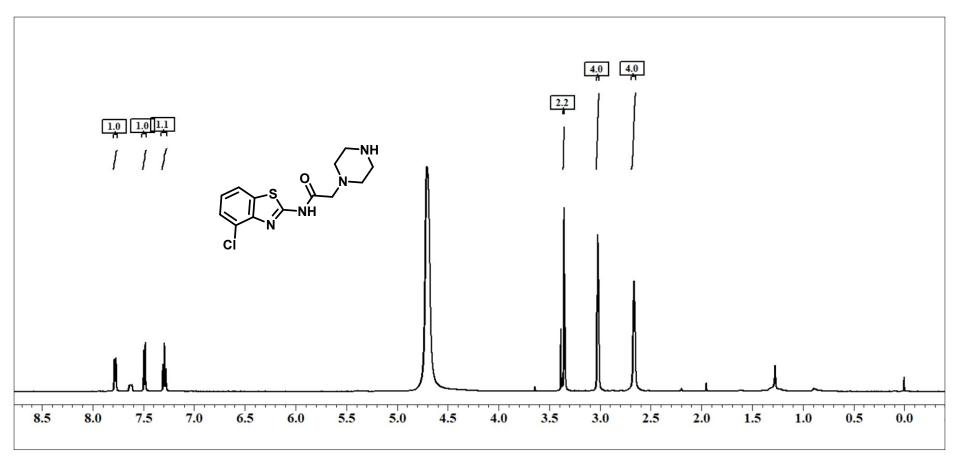


Fig S46: ¹H NMR SPECTRUM OF COMPOUND **9d**(500 MHz, CD₃OD+CDCl₃)

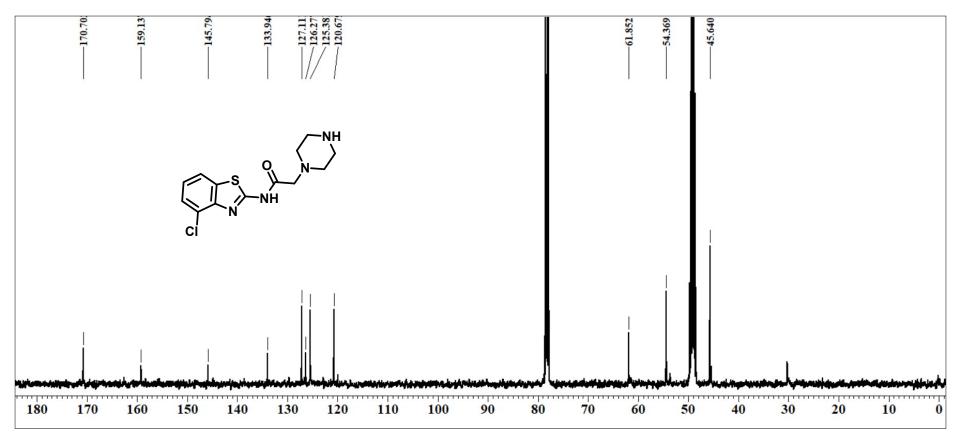


Fig S47: ¹³C NMR SPECTRUM OF COMPOUND **9d** (100 MHz, CDCl₃+CDCl₃)

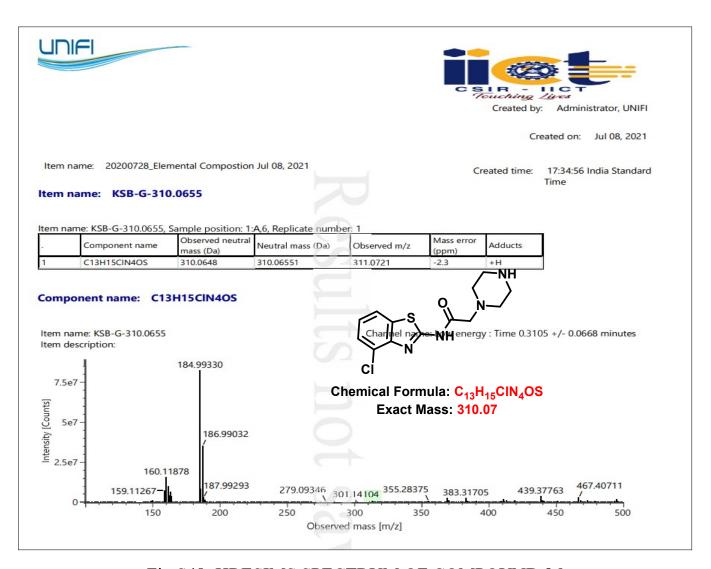


Fig S48: HRESIMS SPECTRUM OF COMPOUND 9d

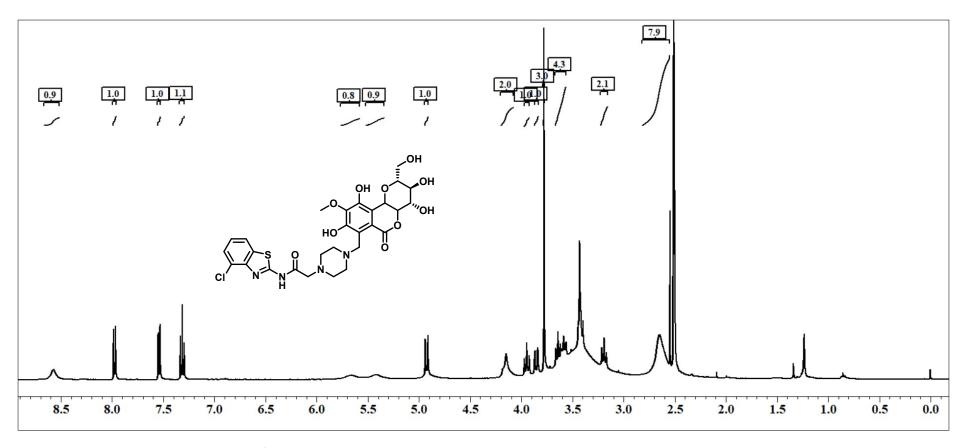


Fig S49: ¹H NMR SPECTRUM OF COMPOUND **10d**(400 MHz, DMSO-d₆)

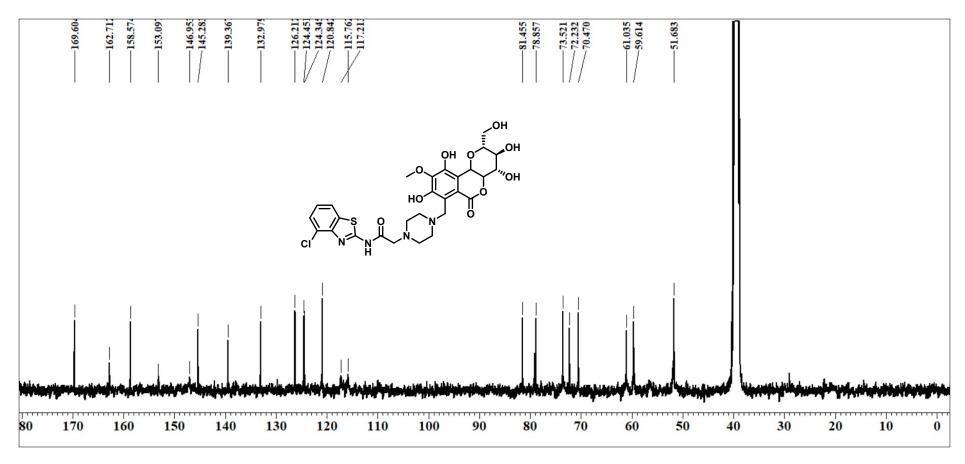


Fig S50: ¹³C NMR SPECTRUM OF COMPOUND **10d** (100 MHz, DMSO-d₆)

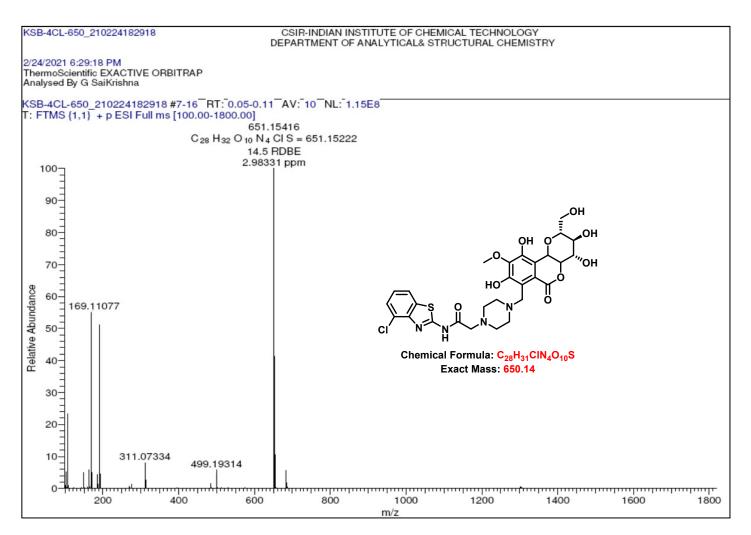


Fig S51: HRESIMS SPECTRUM OF COMPOUND 10d

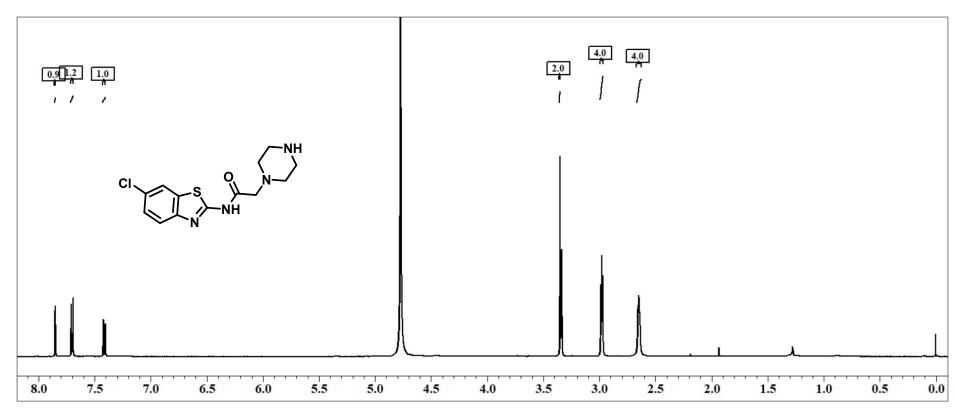


Fig S52: ¹H NMR SPECTRUM OF COMPOUND **9e**(500 MHz, CD₃OD)

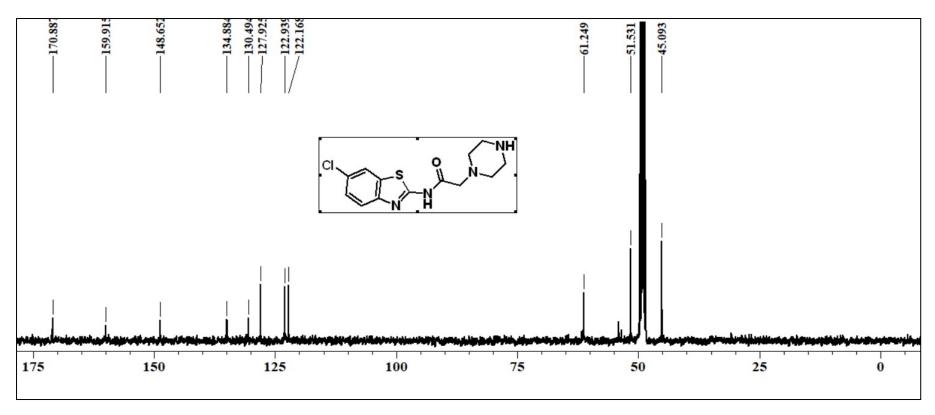


Fig S53: ¹³C NMR SPECTRUM OF COMPOUND **9e** (100 MHz, CD₃OD)

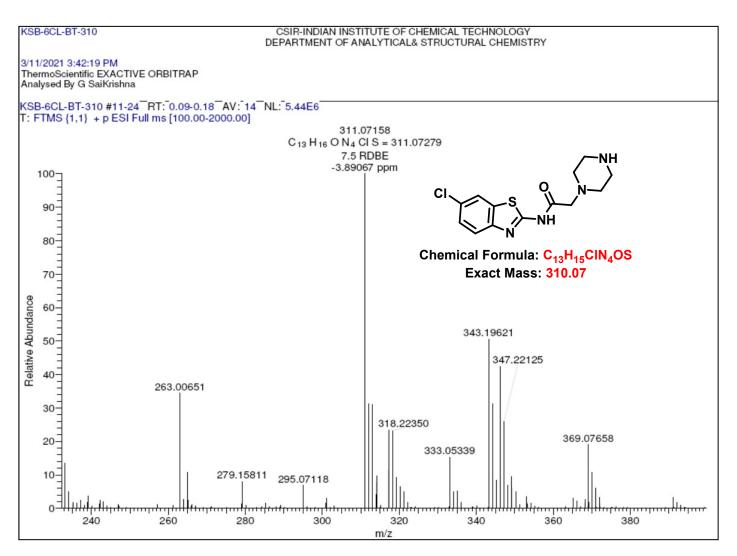


Fig S54: HRESIMS SPECTRUM OF COMPOUND 9e

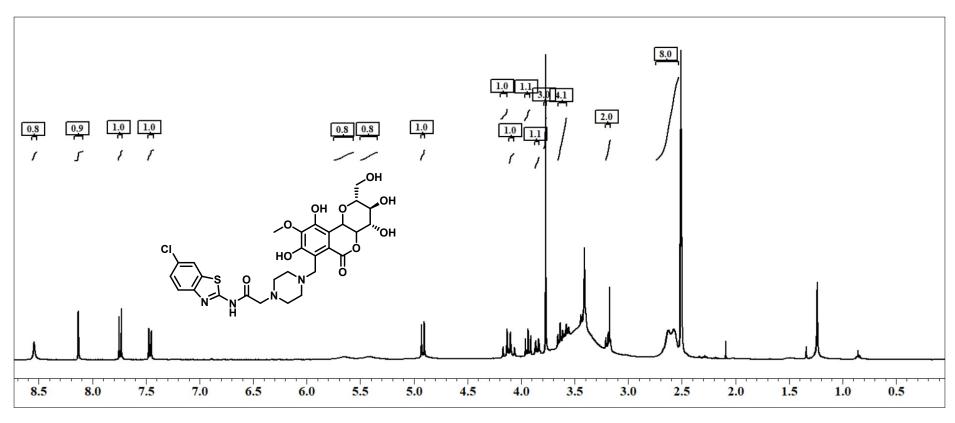


Fig S55: ¹H NMR SPECTRUM OF COMPOUND **10e**(300 MHz, DMSO-d₆)

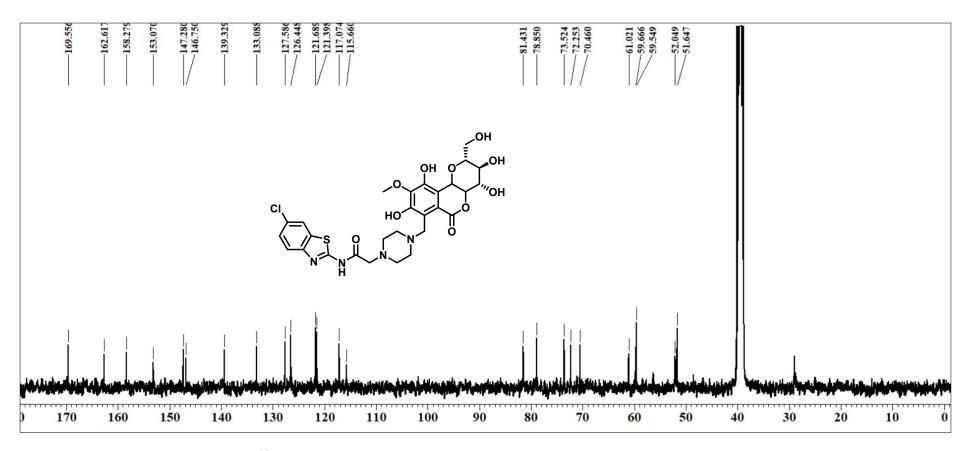


Fig S56: ¹³C NMR SPECTRUM OF COMPOUND **10e** (100 MHz, DMSO-d₆)

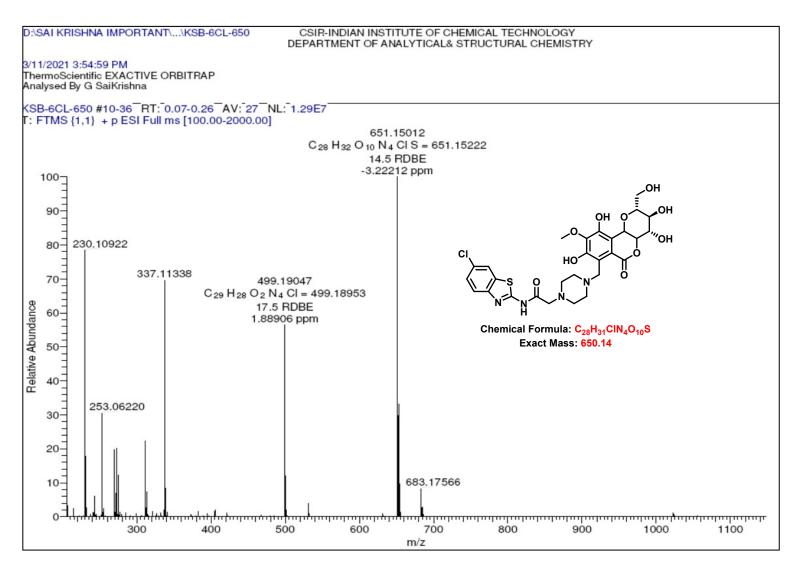
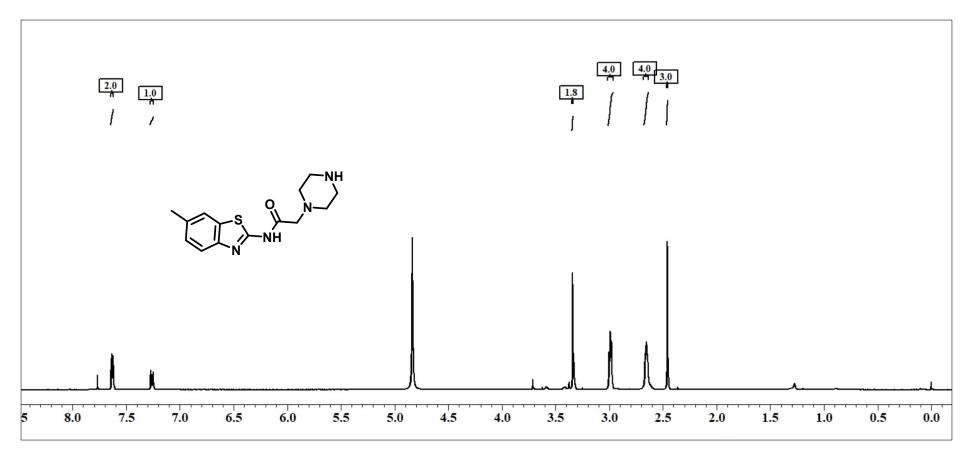



Fig S57: HRESIMS SPECTRUM OF COMPOUND 10e

6меFig S58: 1H NMR SPECTRUM OF COMPOUND **9f**(400 MHz, CD₃OD+CDCl₃)

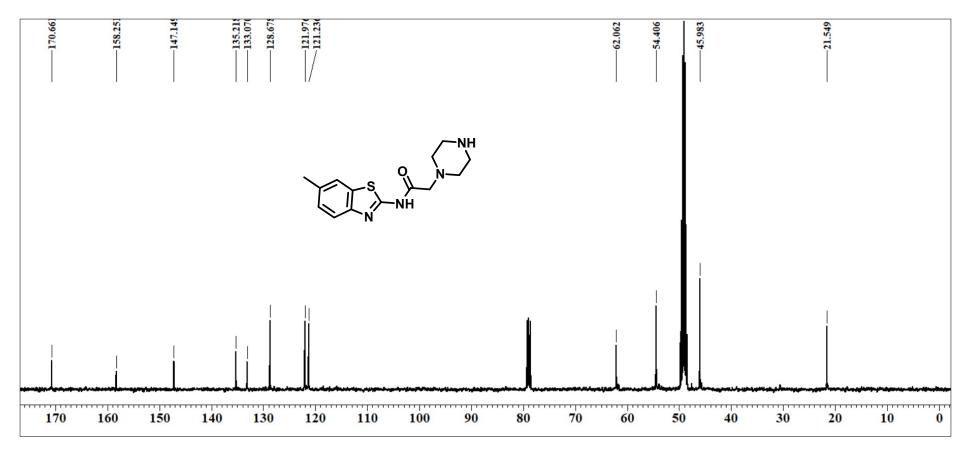


Fig S59: ¹³C NMR SPECTRUM OF COMPOUND **9f** (100 MHz, CD₃OD+CDCl₃)

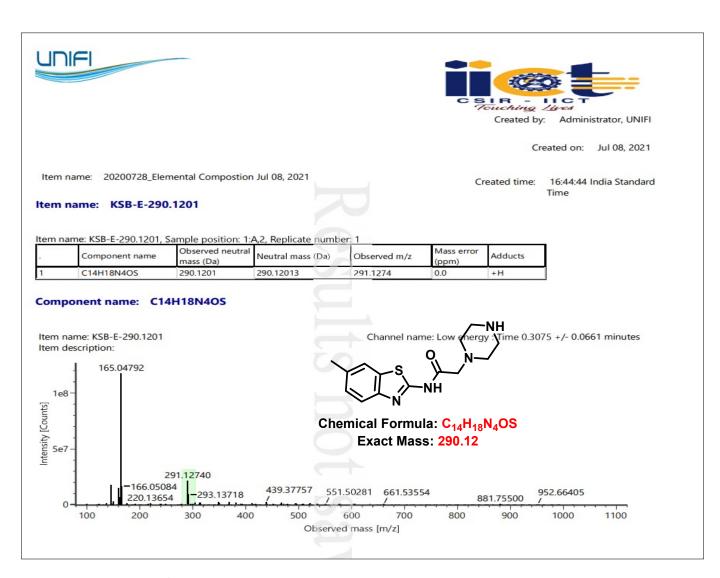


Fig S60: HRESIMS SPECTRUM OF COMPOUND 9f

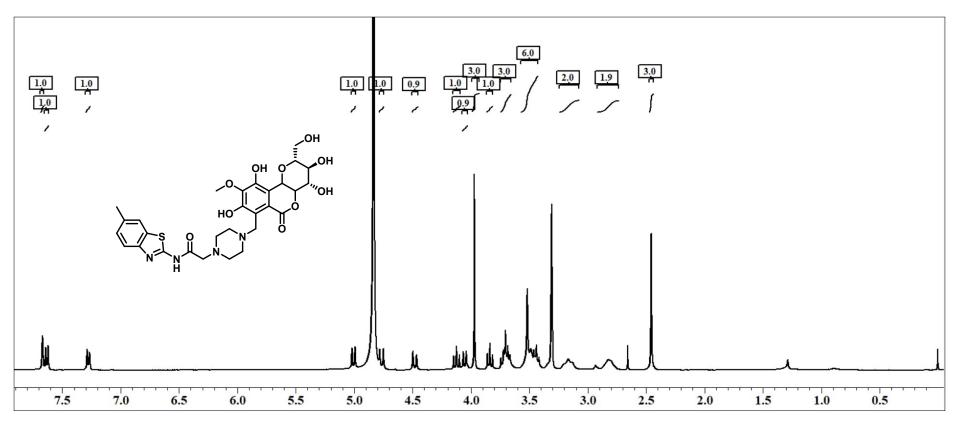


Fig S61: ¹H NMR SPECTRUM OF COMPOUND **10f**(400 MHz, CD₃OD)

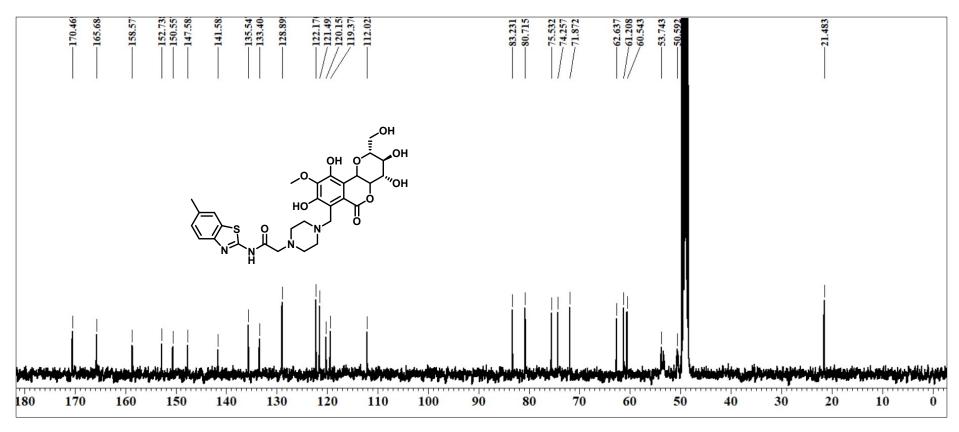
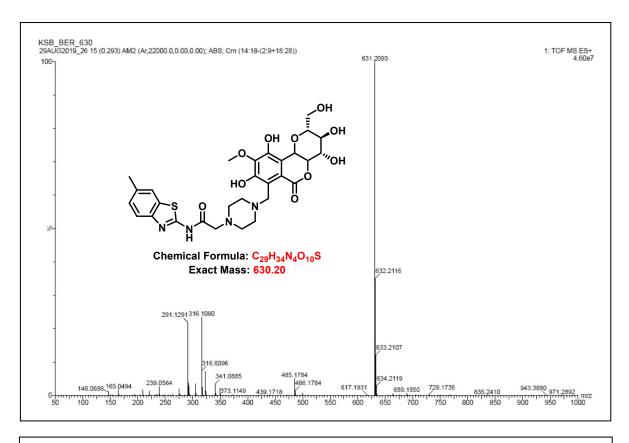



Fig S62: ¹³C NMR SPECTRUM OF COMPOUND **10f** (100 MHz, CD₃OD)

Elementa	I Compositio	n Repo	rt								Pa	ige 1
Tolerance = Element pro Number of Monoisotopi	ass Analysis = 100.0 PPM / ediction: Off isotope peaks u c Mass, Even Ele (e) evaluated with	sed for i	S			otopic mat	ches for ea	ich mass)				
Elements Us C: 0-29 H:	0-35 N: 0-4 (0: 0-10	S: 0-1 I:	0-1								
C: 0-29 H: KSB_BER_63 29AUG2019_	0-35 N: 0-4 (30 26 15 (0.293) AM2 940 165.0494	(Ar,22000.); ABS; Ci		510.2010	631.2093	689.1850 700	767.1213 800	4,,,,,,	971.289)e+00
C: 0-29 H: KSB_BER_63 29AUG2019_	0-35 N: 0-4 (30 26 15 (0.293) AM2 940 165.0494	(Ar,22000.	0,0.00,0.00) 16.1080 341); ABS; Ci	485.1784	510.2010		689.1850		4,,,,,,	4.60 971.289	0e+00
C: 0-29 H: KSB_BER_63 29AUG2019_ 100 99.0 10 Minimum:	0-35 N: 0-4 (30 26 15 (0.293) AM2 940 165.0494	(Ar,22000.	0,0.00,0.00) 16.1080 341); ABS; Ci	485.1784	510.2010	600	689.1850		4,,,,,,	4.60 971.289	0e+00

Fig S63: HRESIMS SPECTRUM OF COMPOUND 10f

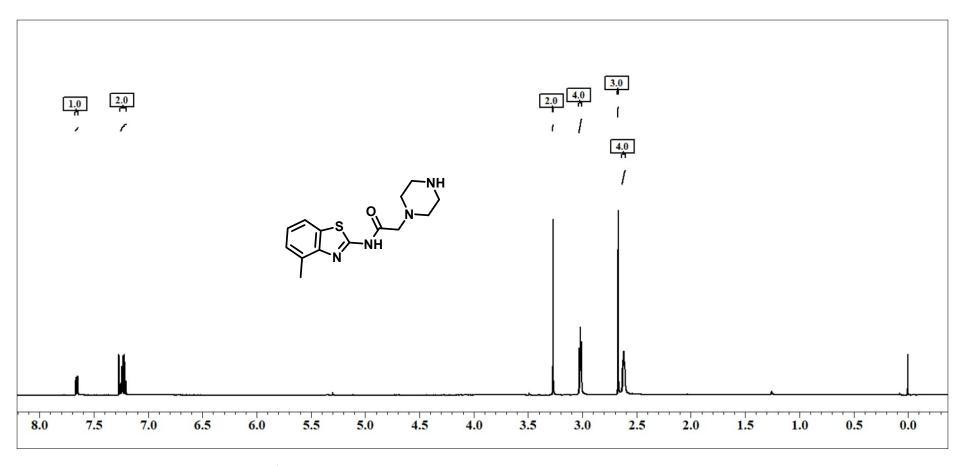


Fig S64: ¹H NMR SPECTRUM OF COMPOUND **9g**(400 MHz, CD₃OD)

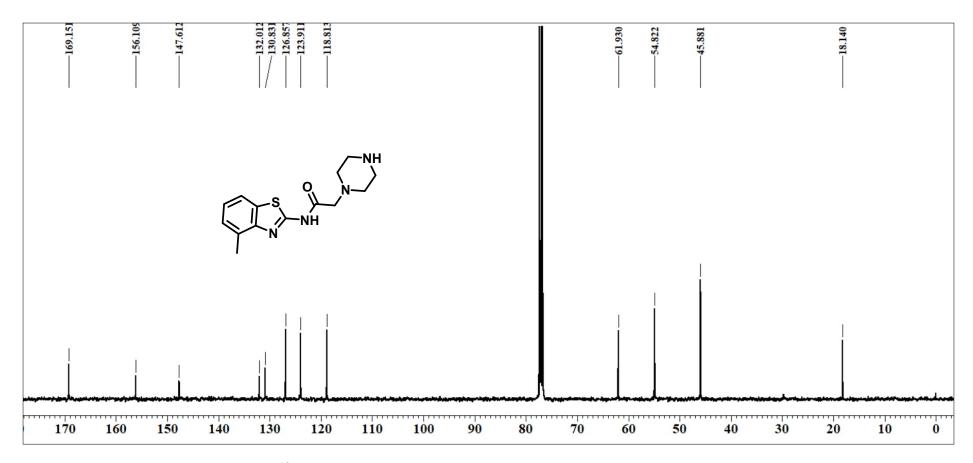


Fig S65: ¹³C NMR SPECTRUM OF COMPOUND **9g** (100 MHz, CDCl₃)

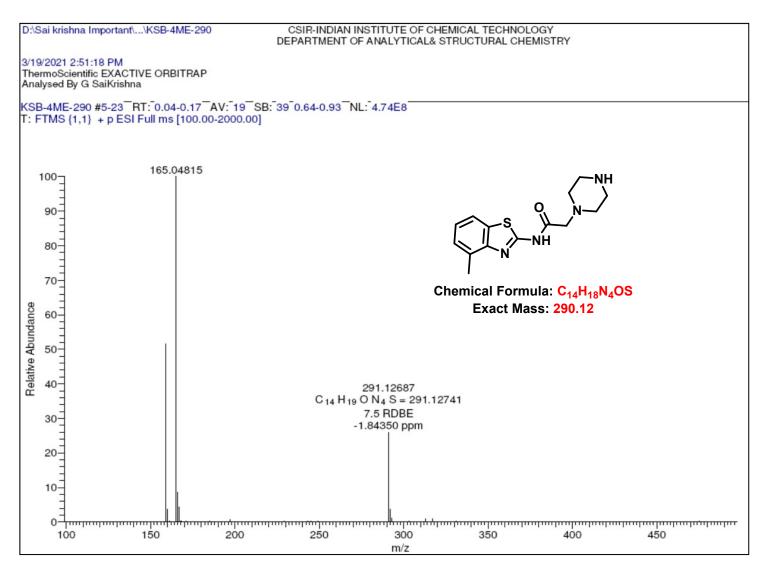


Fig S66: HRESIMS SPECTRUM OF COMPOUND 9g

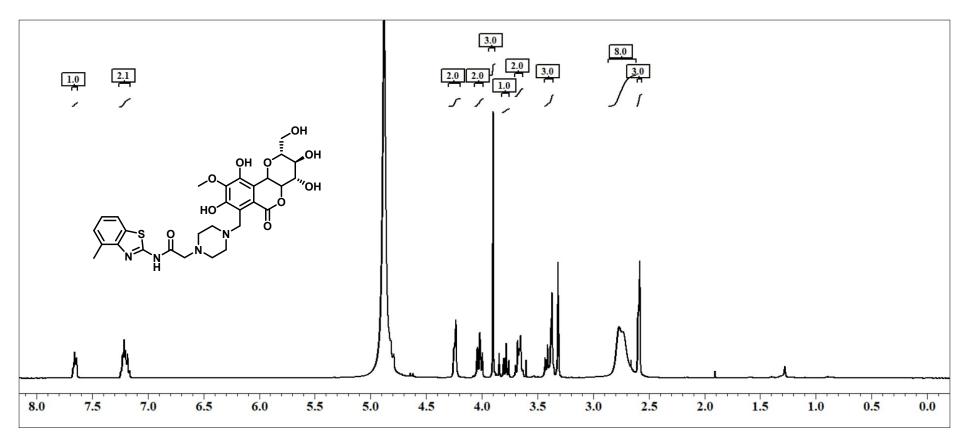


Fig S67: ¹H NMR SPECTRUM OF COMPOUND **10g**(500 MHz, CD₃OD)

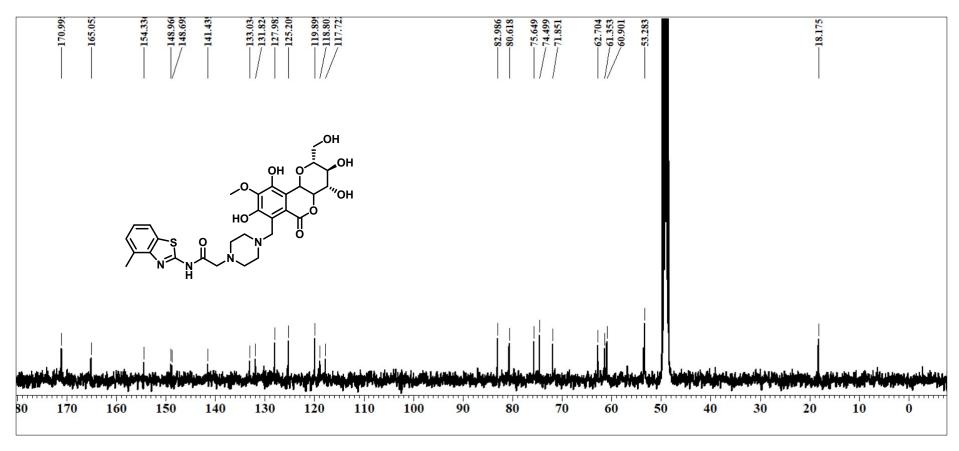


Fig S68: $^{13}\mathrm{C}$ NMR SPECTRUM OF COMPOUND $\mathbf{10g}$ (100 MHz, CD₃OD)

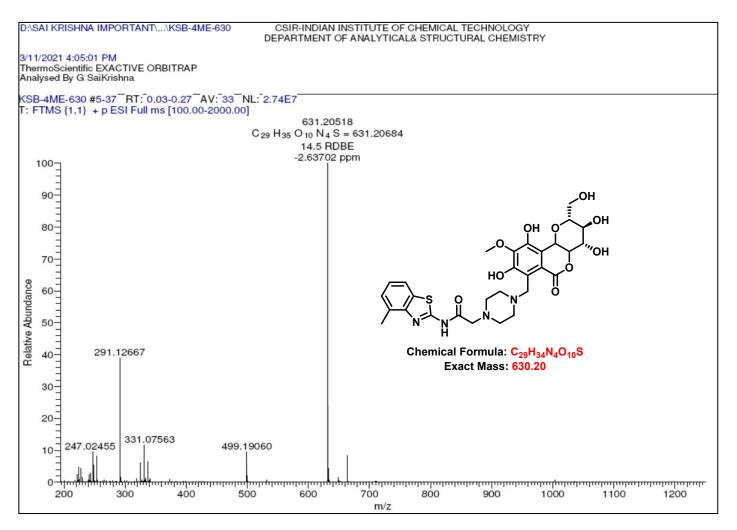


Fig S69: HRESIMS SPECTRUM OF COMPOUND 10g

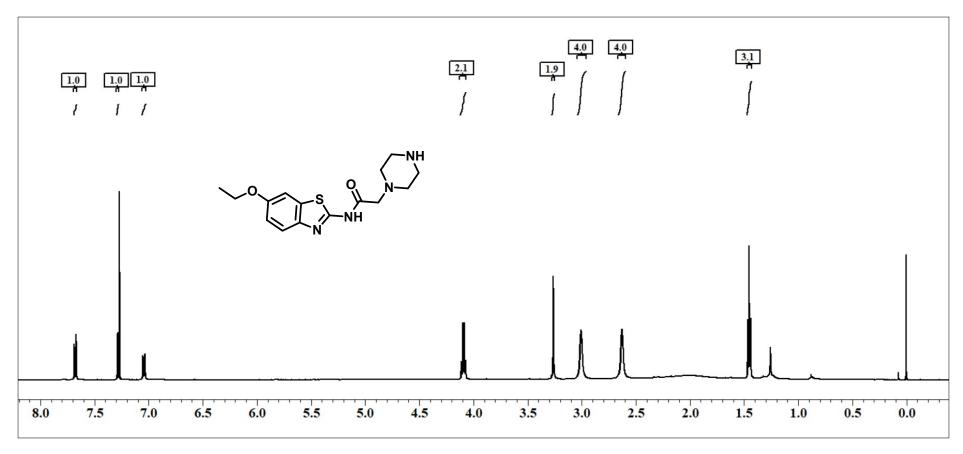


Fig S70: ¹H NMR SPECTRUM OF COMPOUND **9h**(500 MHz, CD₃OD)

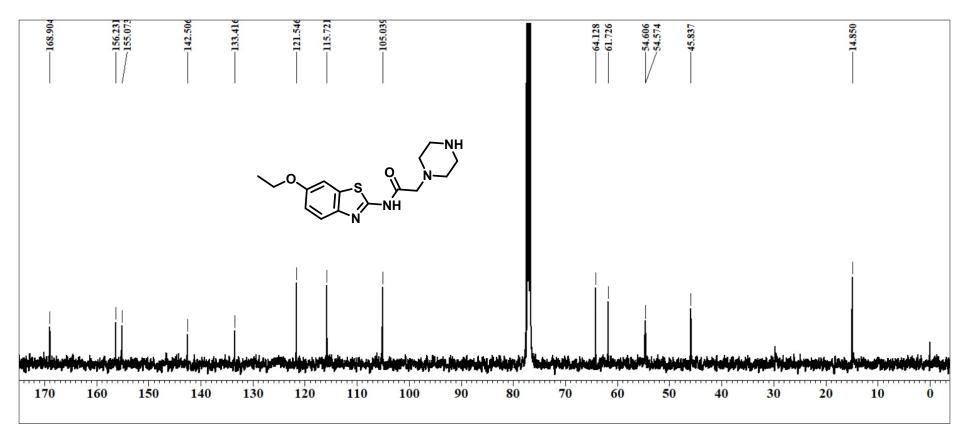


Fig S71: ¹³C NMR SPECTRUM OF COMPOUND **9h** (100 MHz, CDCl₃)

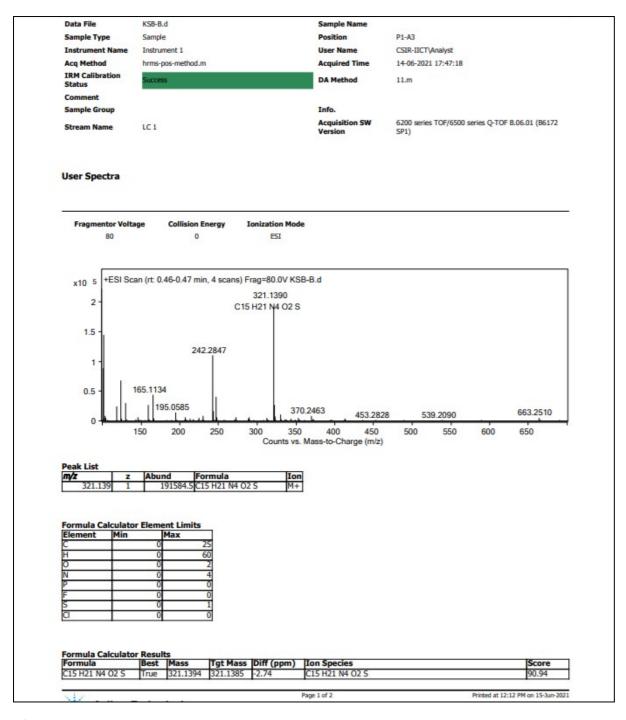


Fig S72: HRESIMS SPECTRUM OF COMPOUND $\mathbf{9h}$

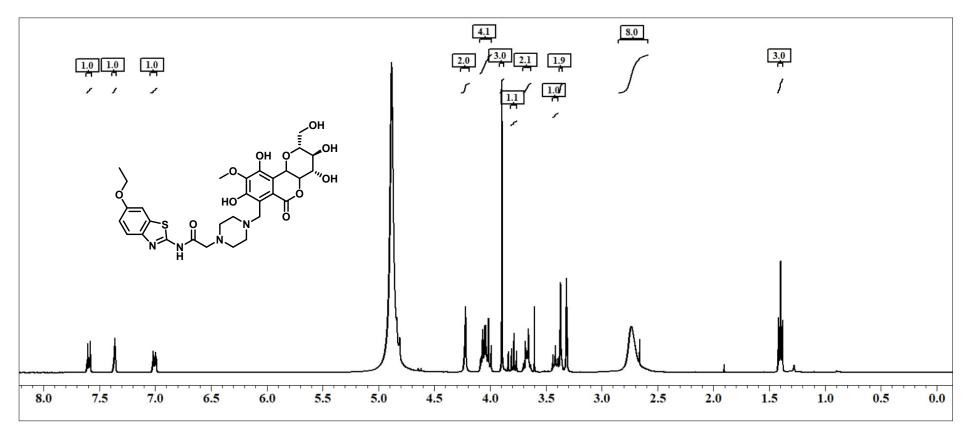


Fig S73: ¹H NMR SPECTRUM OF COMPOUND **10h**(400 MHz, CD₃OD)

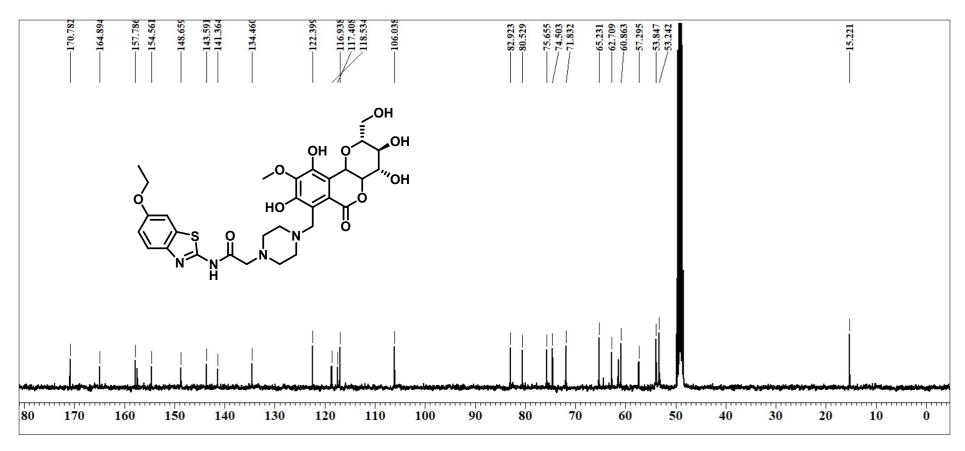


Fig S74: ¹³C NMR SPECTRUM OF COMPOUND **10h** (100 MHz, CD₃OD)

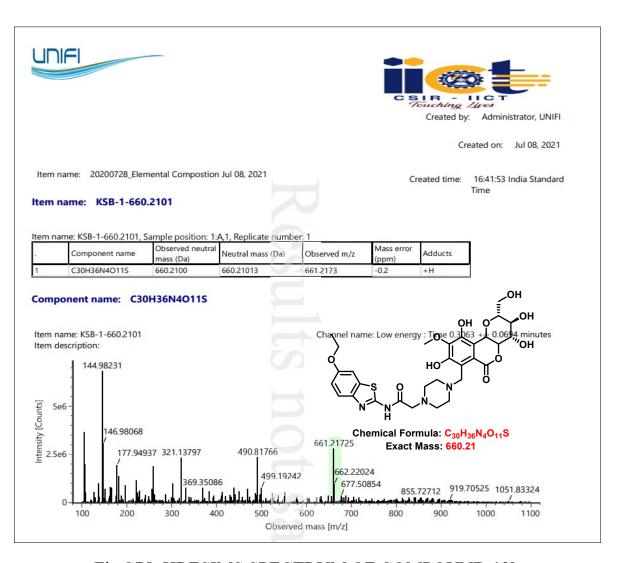


Fig S75: HRESIMS SPECTRUM OF COMPOUND 10h

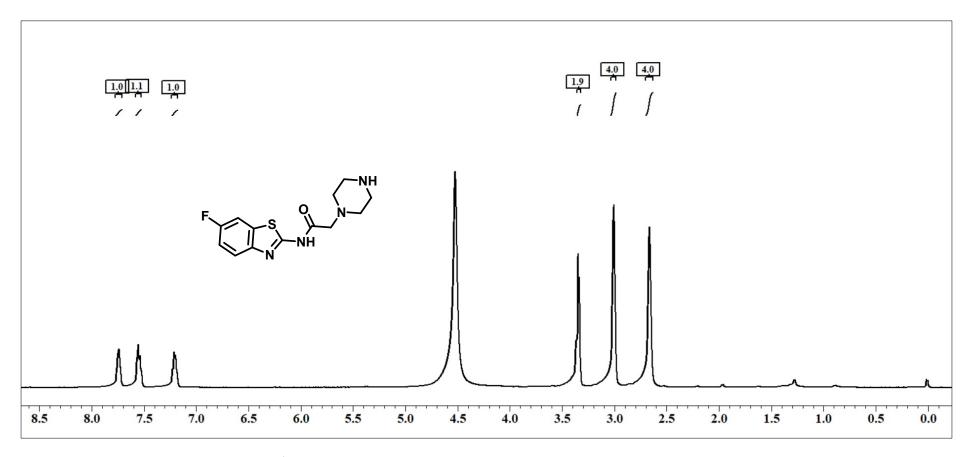


Fig S76: ¹H NMR SPECTRUM OF COMPOUND **9i**(500 MHz, CD₃OD)

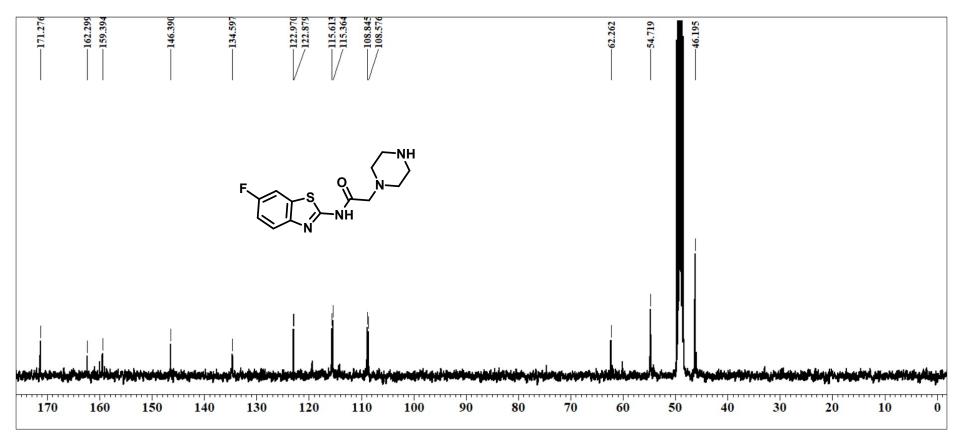


Fig S77: ¹³C NMR SPECTRUM OF COMPOUND **9i** (100 MHz, CD₃OD)

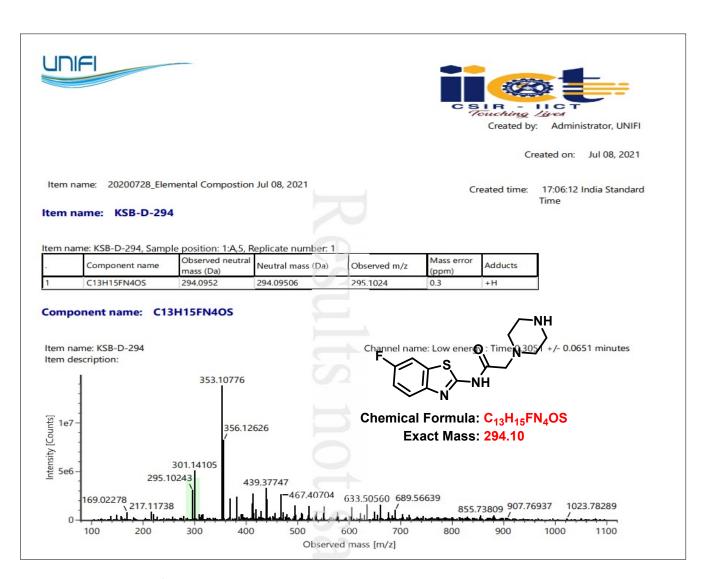


Fig S78: HRESIMS SPECTRUM OF COMPOUND 9

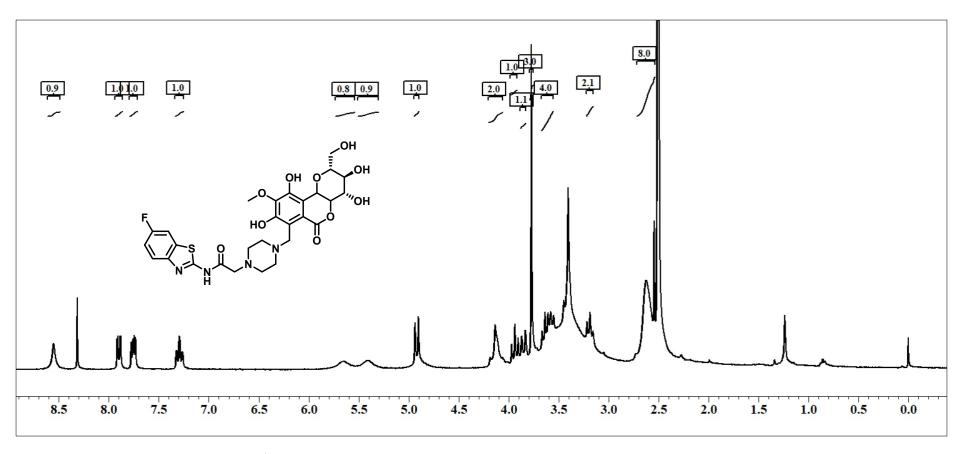


Fig S79: ¹H NMR SPECTRUM OF COMPOUND **10i**(400 MHz, DMSO-d₆)

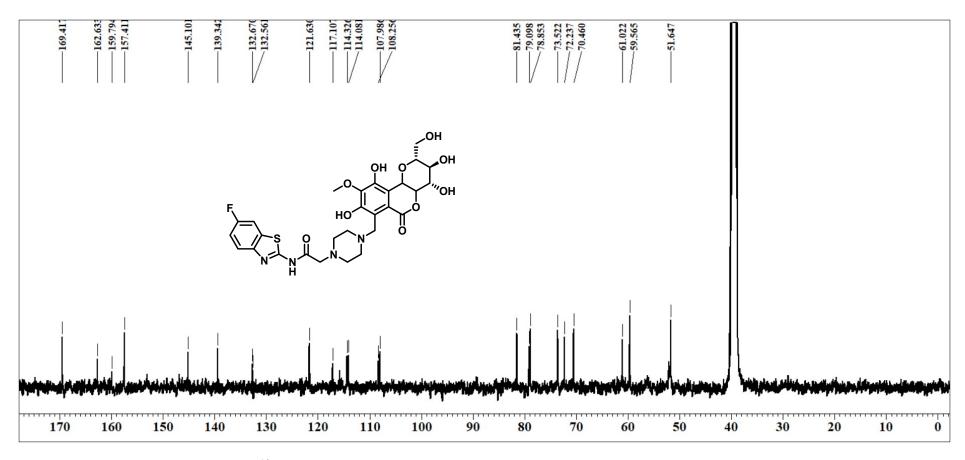


Fig S80: ¹³C NMR SPECTRUM OF COMPOUND **10i** (100 MHz, DMSO-d₆)

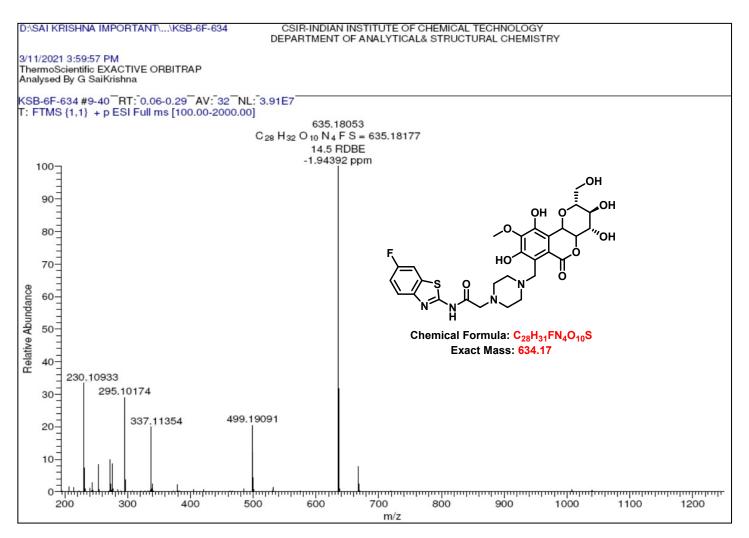


Fig S81: HRESIMS SPECTRUM OF COMPOUND 10i

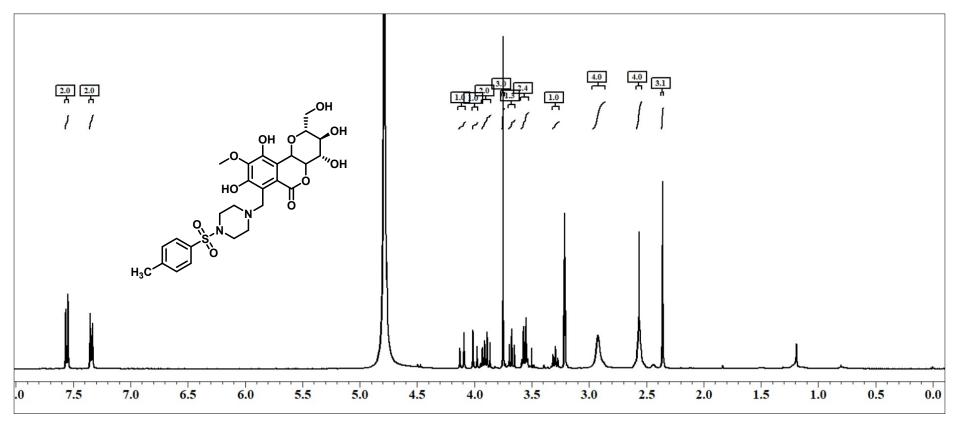


Fig S82: ¹H NMR SPECTRUM OF COMPOUND **13a** (400 MHz, CD₃OD)

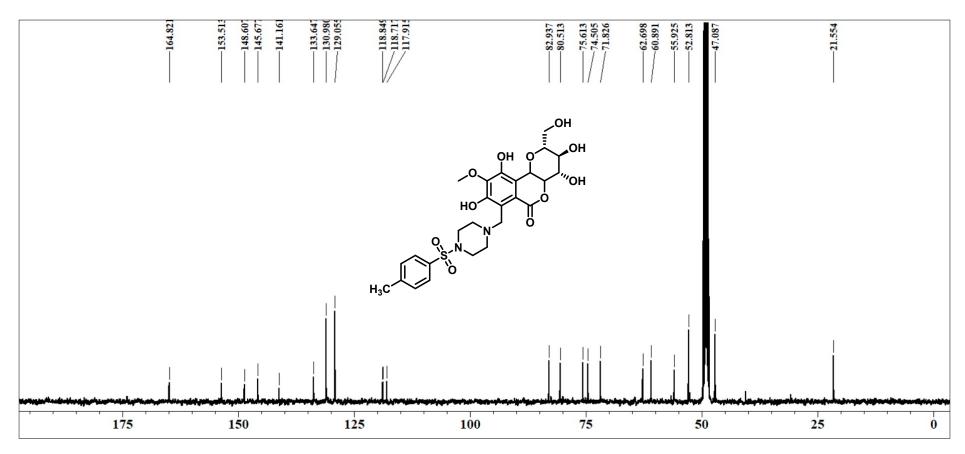
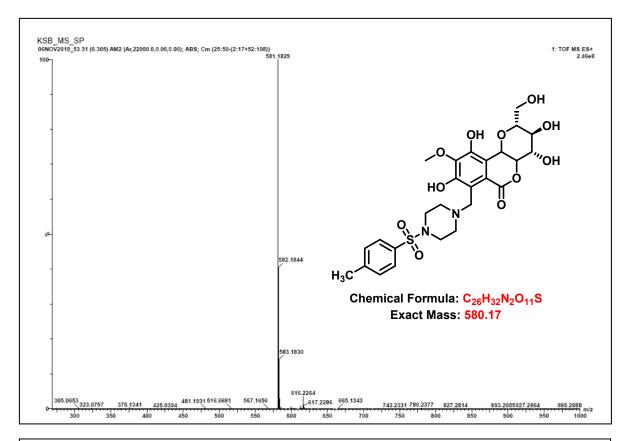



Fig S83: ¹³C NMR SPECTRUM OF COMPOUND **13a** (100 MHz, CD₃OD)

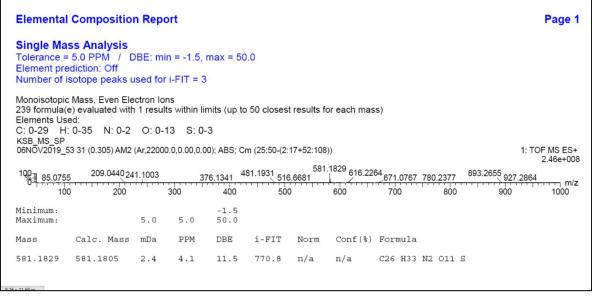


Fig S84: HRESIMS SPECTRUM OF COMPOUND 13g

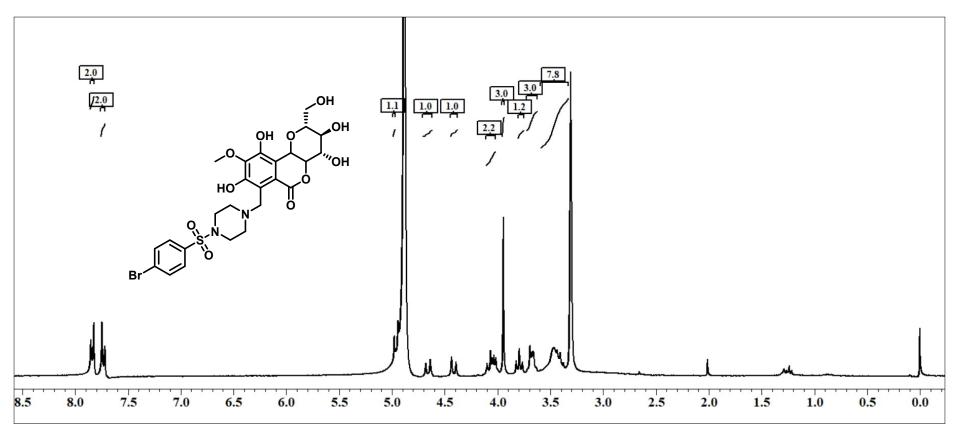


Fig S85: ¹H NMR SPECTRUM OF COMPOUND **13b** (300 MHz, CD₃OD)

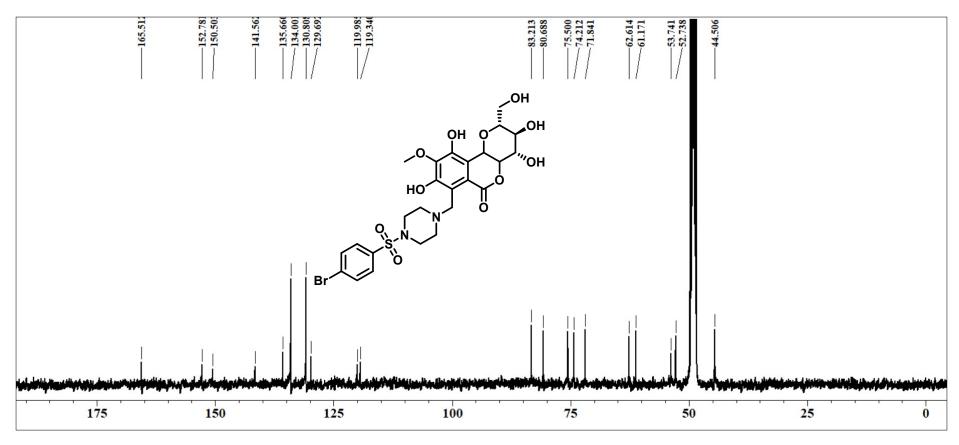


Fig S86: ¹³C NMR SPECTRUM OF COMPOUND **13b** (100 MHz, CD₃OD)

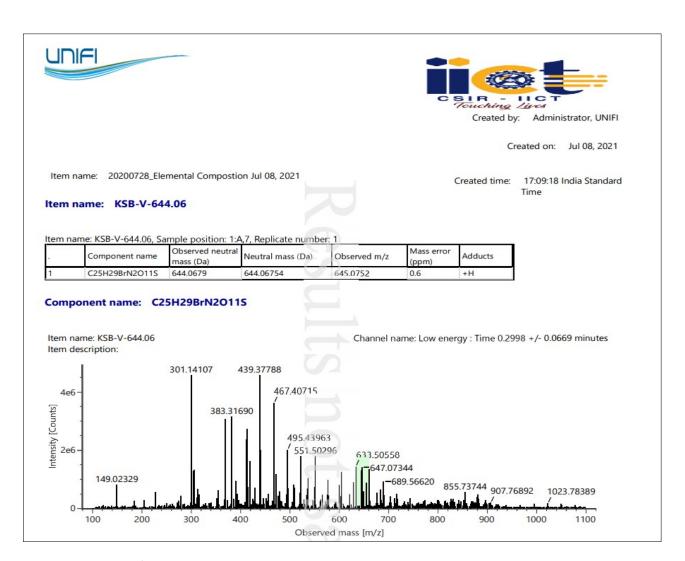


Fig S87: HRESIMS SPECTRUM OF COMPOUND 13b

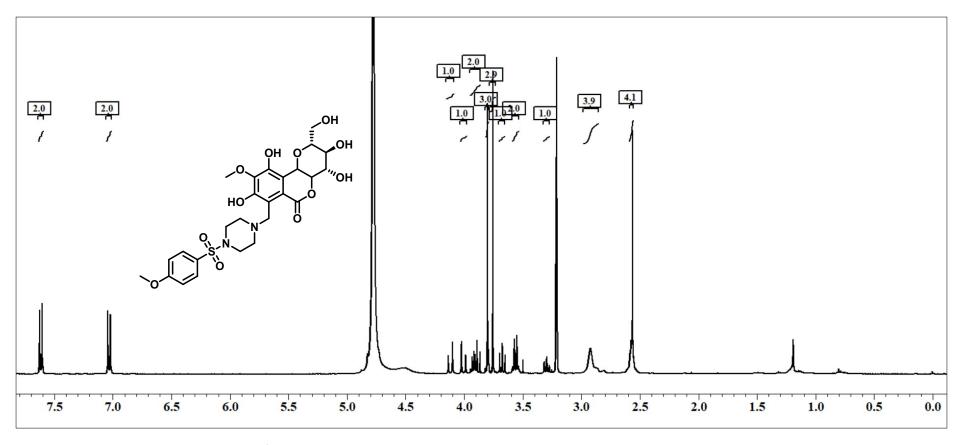


Fig S88: ¹H NMR SPECTRUM OF COMPOUND **13c** (400 MHz, CD₃OD)

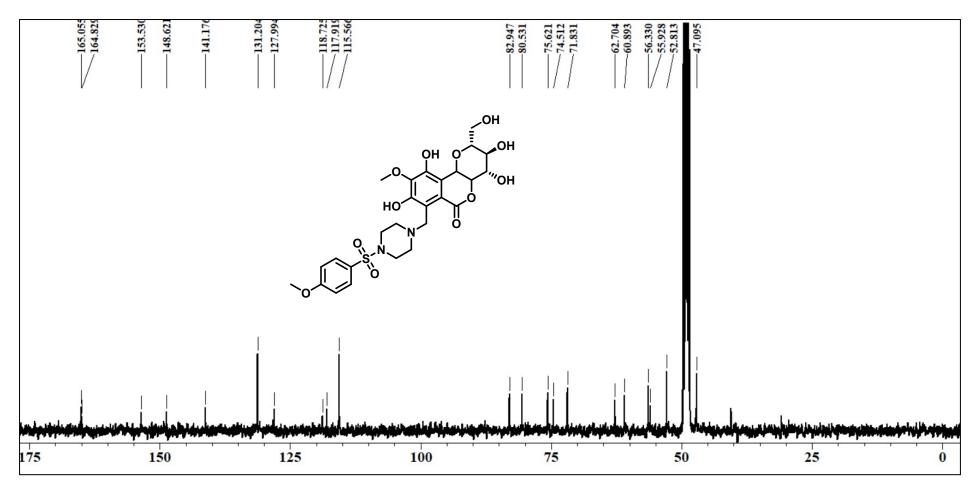
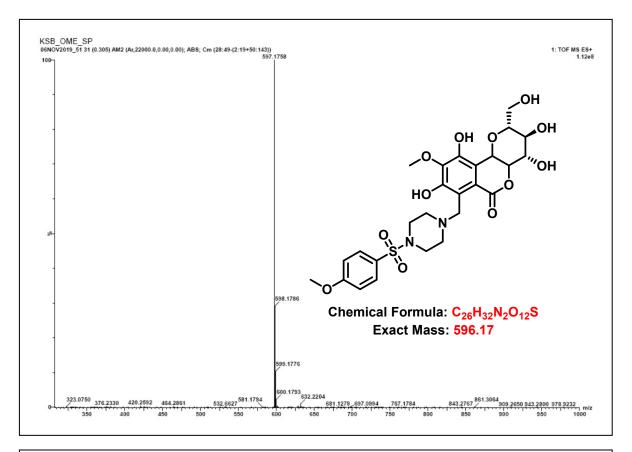



Fig S89: ¹³C NMR SPECTRUM OF COMPOUND **13c** (100 MHz, CD₃OD)

Element	al Compositio	n Report	t									Page
Tolerance Element p	lass Analysis = 5.0 PPM / E rediction: Off f isotope peaks u		= -1.5, ma FIT = 3	ax = 50	0.0							
	oic Mass, Even Ele a(e) evaluated with			s (up to	o 50 closes	t results fo	or each mas	ss)				
KSB_OME_ 06NOV2019	H: 0-35 N: 0-2 SP _51 31 (0.305) AM2	(Ar,22000.0	,0.00,0.00);		cm (28:49-(2 597.1758							1: TOF MS ES 1.12e+0
C: 0-26 KSB_OME_ 06NOV2019	H: 0-35 N: 0-2 SP _51 31 (0.305) AM2	(Ar,22000.0	,0.00,0.00);	627	597.1758	632.2204	681.1279			767 50	909.2650	1.12e+0 943.2800
C: 0-26 KSB_OME_ 06NOV2019	H: 0-35 N: 0-2 SP _51 31 (0.305) AM2	(Ar,22000.0	,0.00,0.00); 532.66 500	627	597.1758	632.2204	681.1279			سلسب	909.2650	1.12e+0 943.2800
C: 0-26 KSB_OME_ 06NOV2019	H: 0-35 N: 0-2 SP _51 31 (0.305) AM2	(Ar,22000.0 92464.2861 450	,0.00,0.00); 532.66 500	550 -1.5	597.1758	632.2204	681.1279 		800 85	سلسب	909.2650	1.12e+0 943.2800

Fig S90: HRESIMS SPECTRUM OF COMPOUND 13c

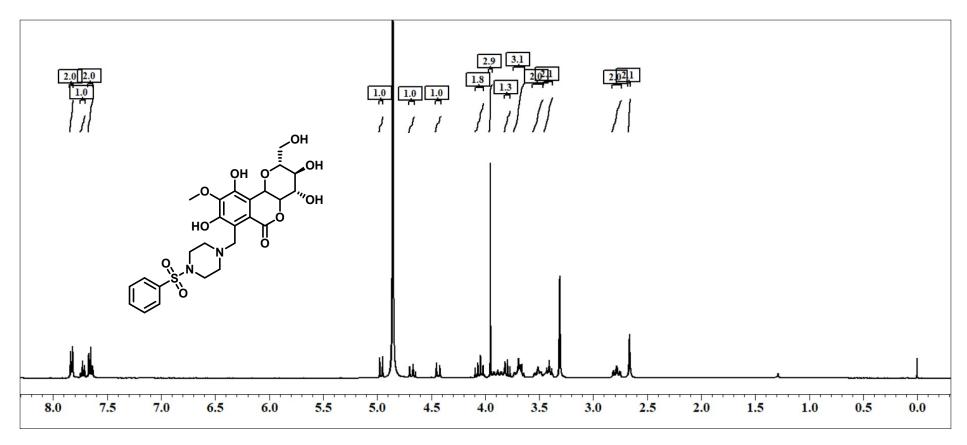


Fig S91: ¹H NMR SPECTRUM OF COMPOUND **13d** (400 MHz, CD₃OD)

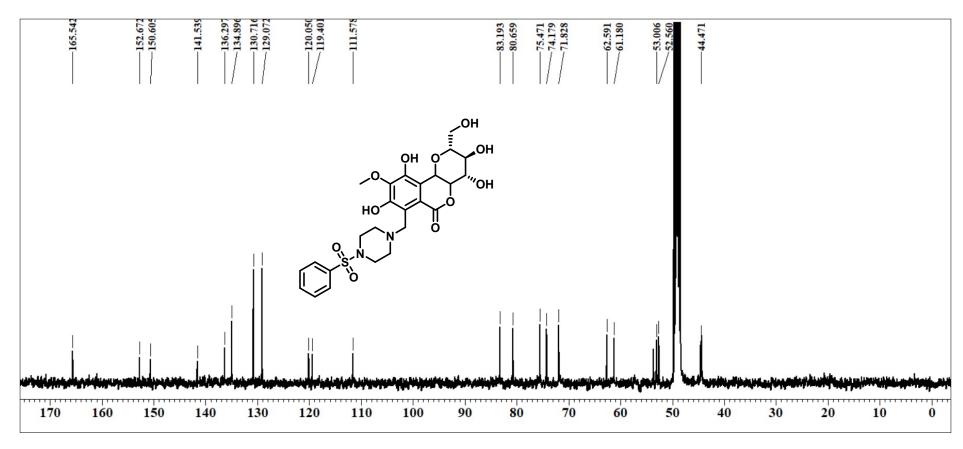
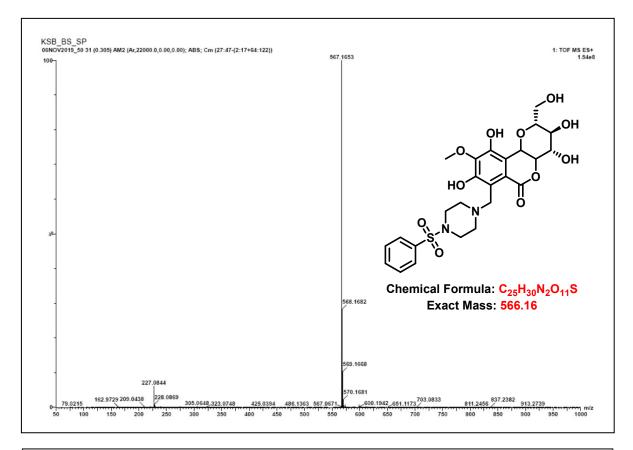



Fig S92: ¹³C NMR SPECTRUM OF COMPOUND **13d** (100 MHz, CD₃OD)

Elemental	Compositio	n Repor	t								Page
Tolerance = Element pre	ss Analysis 5.0 PPM / Ediction: Off sotope peaks to				.0						
198 formula(e Elements Use C: 0-25 H: KSB_BS_SP	Mass, Even Elee) evaluated with ed: : 0-35 N: 0-2	0: 0-13	within lin	3				s)			1: TOF MS ES
100 79.02 0 100	15 162.9729 227.0 200	844 305.0	1648	363.0677 400	486.1363 500	567.16	553 _{599.19116 600}	51.1173 700	811.24	456 837.238 91	1.54e+0 2 913.2739 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Minimum: Maximum:		5.0	5.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
567.1653	567.1649	0.4	0.7	11.5	678.2	n/a	n/a	C25 H31	N2 011	S	

Fig S93: HRESIMS SPECTRUM OF COMPOUND 13d

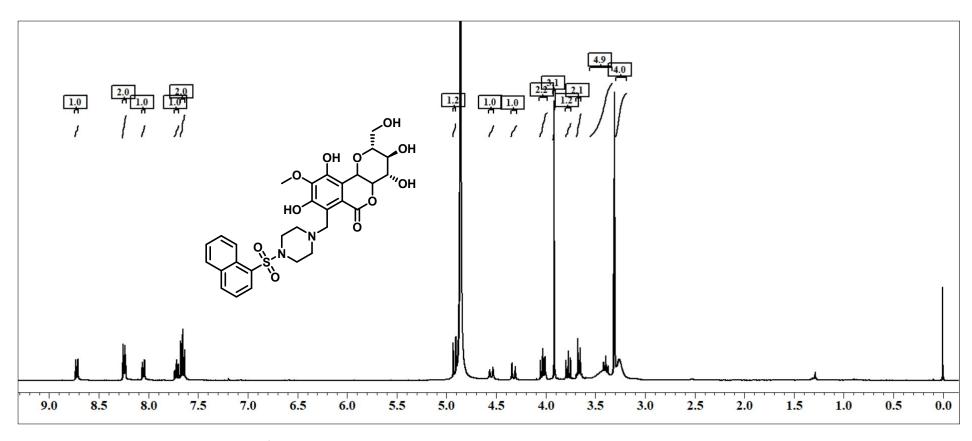


Fig S94: ¹H NMR SPECTRUM OF COMPOUND **13e** (400 MHz, CD₃OD)

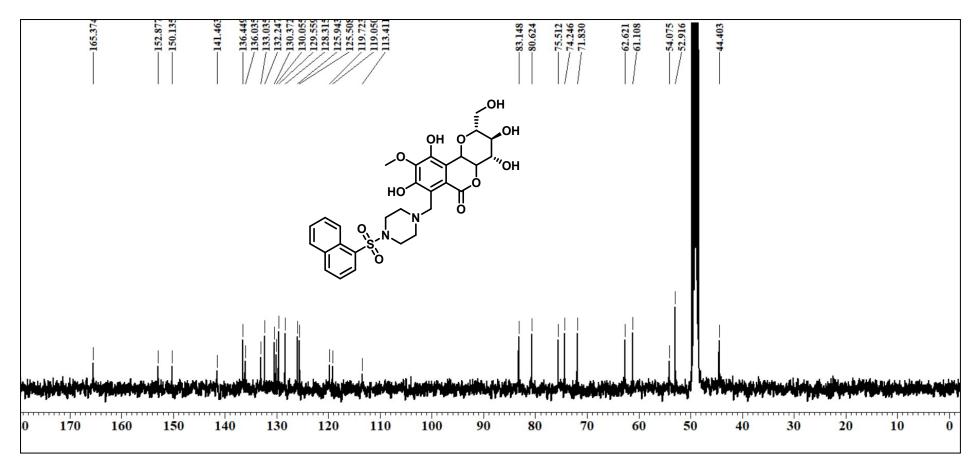
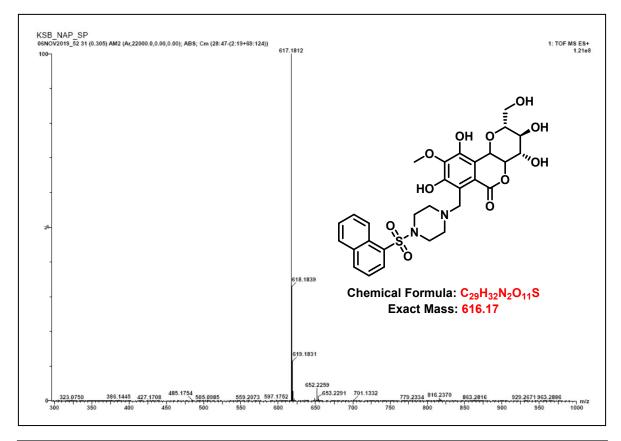



Fig S95: ¹³C NMR SPECTRUM OF COMPOUND **13e** (100 MHz, CD₃OD)

Single Ma	ss Analy	/sis											
Tolerance =	5.0 PPM	/ DE	BE: mi	n = -1.5	, max = 50	0.0							
Element pre	ediction: C)ff											
Number of	isotope pe	aks us	sed for	i-FIT =	3								
Monoisotopio	c Mass, Ev	en Elec	ctron lo	ns									
194 formula(e) evaluate	d with	1 result	ts within	limits (up to	50 closes	st results fo	or each mas	s)				
Elements Us	ed:												
Elements Us C: 0-29 H	ed: : 0-35 N	: 0-2	O: 0-	13 S: (0-3								
Elements Us C: 0-29 H KSB_NAP_SF	ed: : 0-35 N					··· (20.47 /2	.40.60.424					4.	TOE MC E
Elements Us C: 0-29 H KSB_NAP_SF	ed: : 0-35 N					cm (28:47-(2	:19+69:124)					1:	TOF MS ES
Elements Us C: 0-29 H KSB_NAP_SF 06NOV2019_	sed: : 0-35 N 52 31 (0.305	5) AM2 (A	Ar,22000	0.0,0.00,0	.00); ABS; C	, ,	,		52.2259 7	79.2334	016 2270	1:	1.21e+0
Elements Us C: 0-29 H KSB_NAP_SF 06NOV2019_1	ed: : 0-35 N 52 31 (0.305	5) AM2 (A	Ar,22000	0.0,0.00,0	.00); ABS; C	505.	0985	617.1812 ₆	rdumlund	برلسسلس	816.2370	863.2816 9	1.21e+0 929.2671
Elements Us C: 0-29 H KSB_NAP_SF 06NOV2019_9	ed: : 0-35 N 52 31 (0.305	5) AM2 (A	Ar,22000	0.0,0.00,0	.00); ABS; C	505	0985	617.1812 6	rdumlund	79.2334 750	816.2370 111111111111111111111111111111111111	863.2816 9	1.21e+0 929.2671
Elements Us C: 0-29 H KSB_NAP_SF 06NOV2019_:	ed: : 0-35 N 52 31 (0.305	5) AM2 (A	Ar,22000	0.0,0.00,0	.00); ABS; C	505.	0985	617.1812 ₆	rdumlund	برلسسلس	minimize the	863.2816 9	1.21e+0 929.2671
Elements US C: 0-29 H KSB_NAP_SF 06NOV2019_1 100 1 0 100 Minimum:	ed: : 0-35 N 52 31 (0.305	09.0436 200	Ar,22000	0.0,0.00,0	.00); ABS; C	505.	0985	617.1812 ₆	rdumlund	برلسسلس	minimize the	863.2816 9	1.21e+0 929.2671
Elements US C: 0-29 H KSB_NAP_SF 06NOV2019_1	ed: : 0-35 N 52 31 (0.305	09.0436 200	Ar,22000 3 277.10 250	0.0,0.00,0	.00); ABS; C 386.1445 50 400 -1.5	505.	0985	617.1812 ₆	700	750	minimize the	863.2816 9	1.21e+0 929.2671

Fig S96: HRESIMS SPECTRUM OF COMPOUND 13

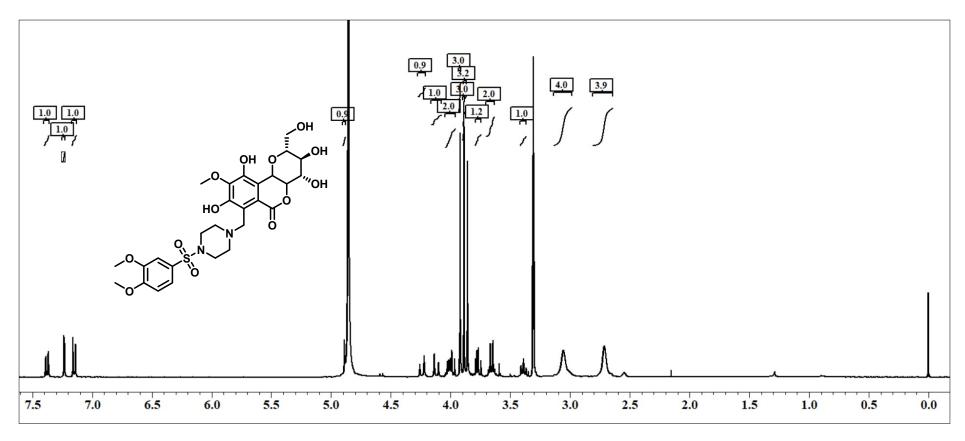


Fig S97: ¹H NMR SPECTRUM OF COMPOUND **13f** (400 MHz, CD₃OD)

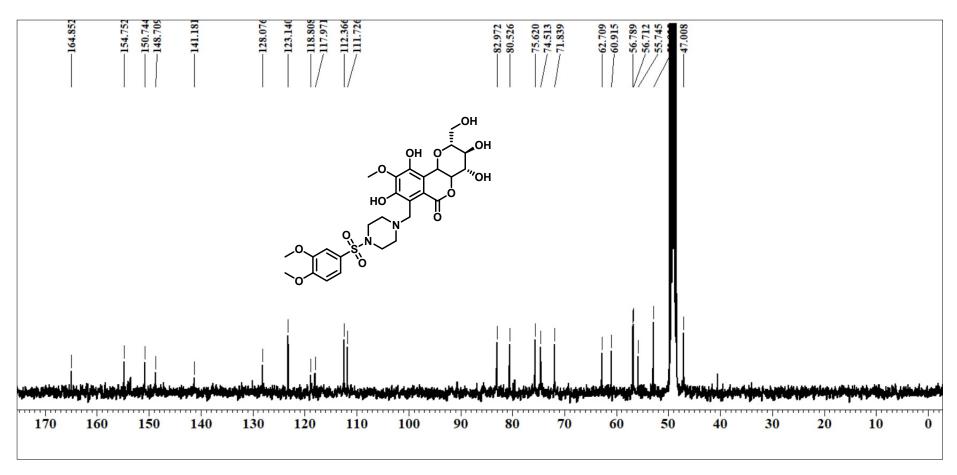


Fig S98: ¹³C NMR SPECTRUM OF COMPOUND **13f** (100 MHz, CD₃OD)

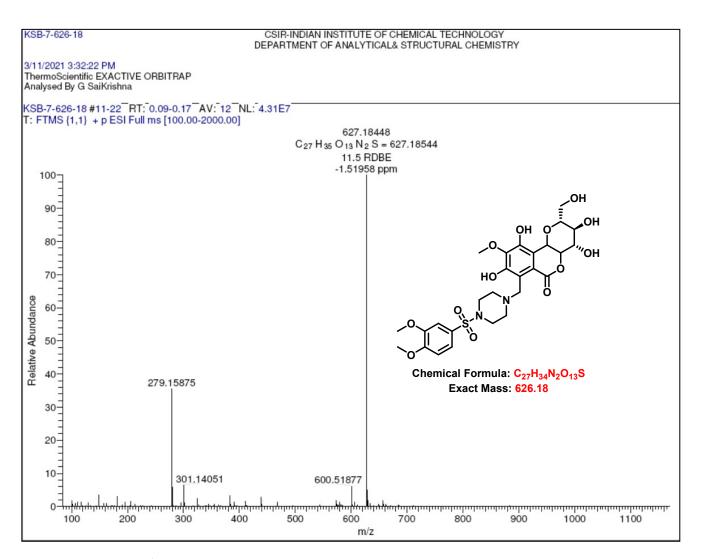


Fig S99: HRESIMS SPECTRUM OF COMPOUND 13f

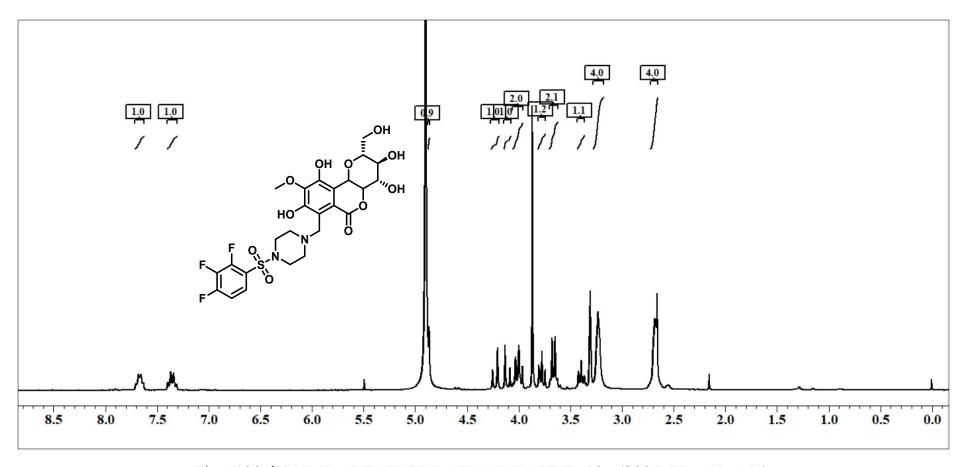


Fig S100: ¹H NMR SPECTRUM OF COMPOUND **13g** (300 MHz, CD₃OD)

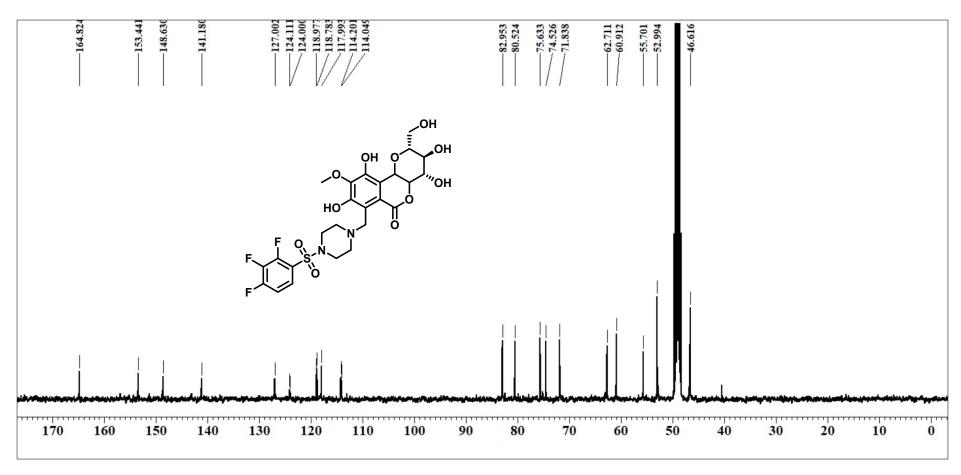


Fig S101: ¹³C NMR SPECTRUM OF COMPOUND **13g** (100 MHz, CD₃OD)

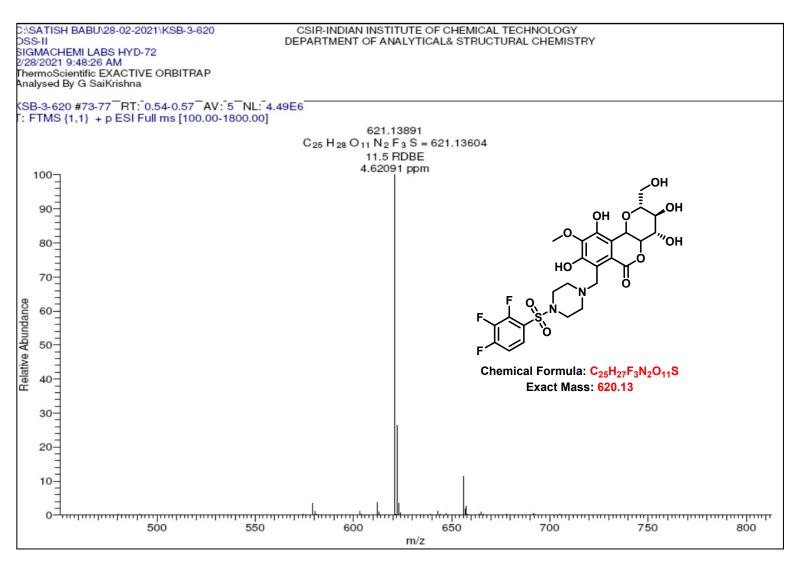


Fig S102: HRESIMS SPECTRUM OF COMPOUND 13g

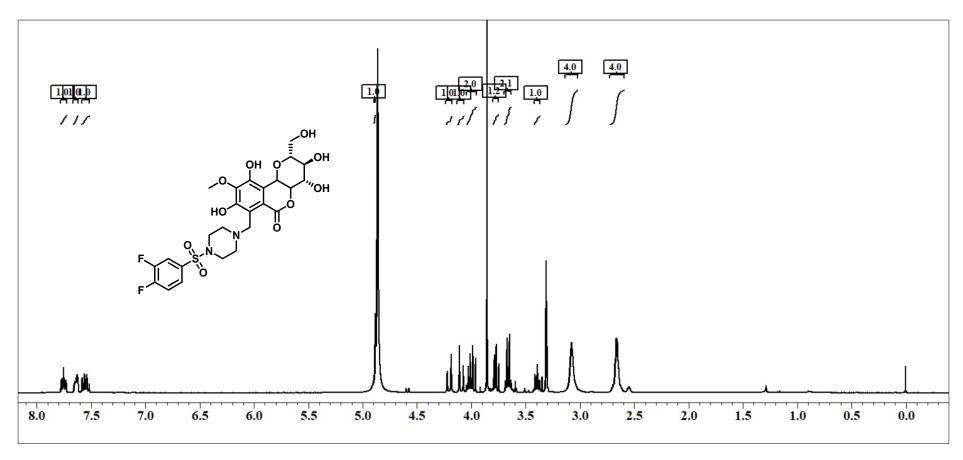


Fig S103: ¹H NMR SPECTRUM OF COMPOUND **13h** (400 MHz, CD₃OD)

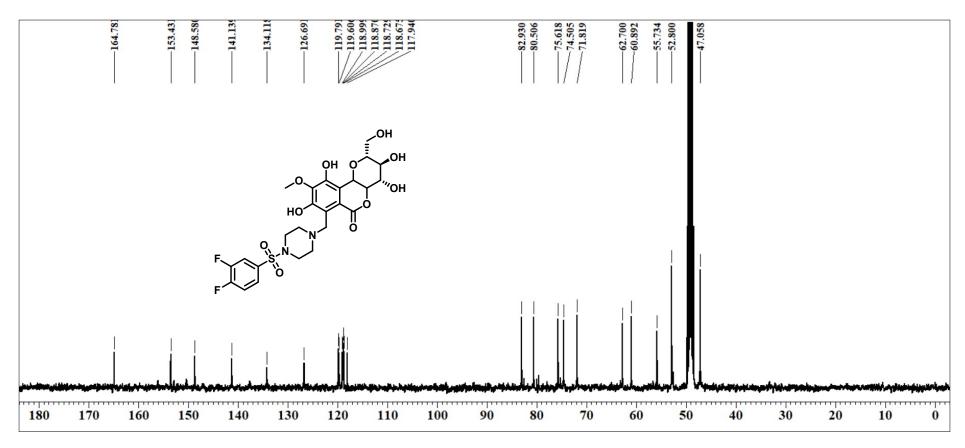


Fig S104: ¹³C NMR SPECTRUM OF COMPOUND **13h** (100 MHz, CD₃OD)

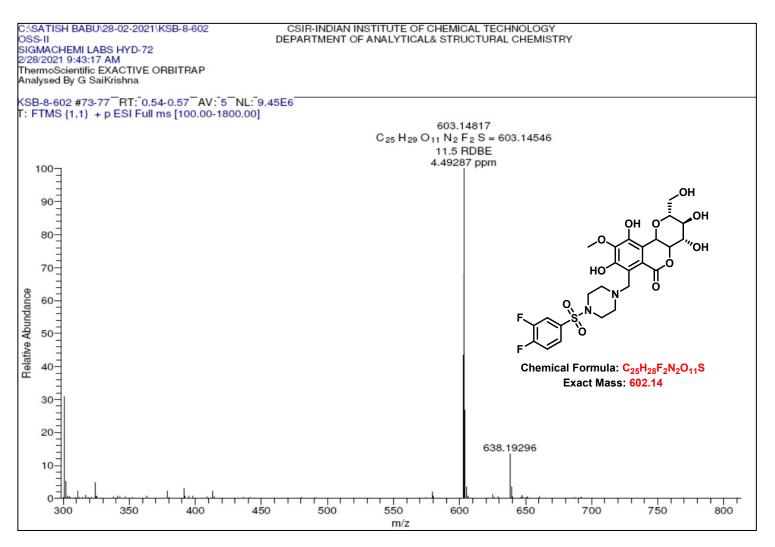


Fig S105: HRESIMS SPECTRUM OF COMPOUND 13h

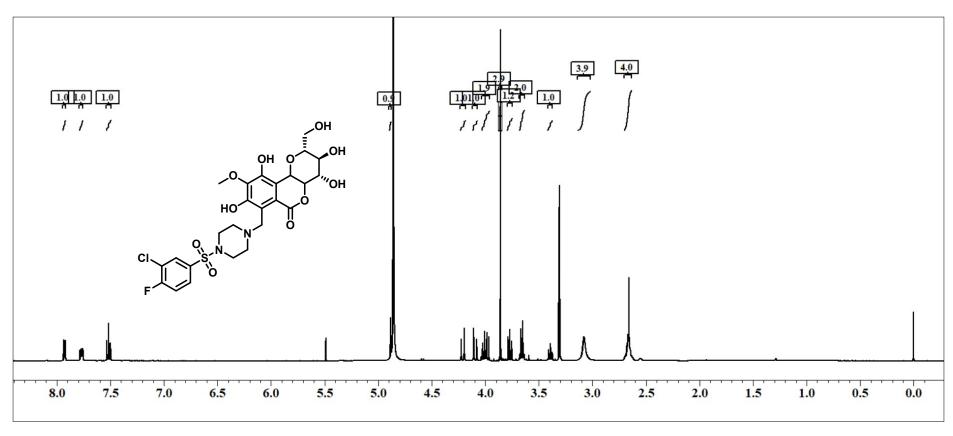


Fig S106: ¹H NMR SPECTRUM OF COMPOUND **13i** (500 MHz, CD₃OD)

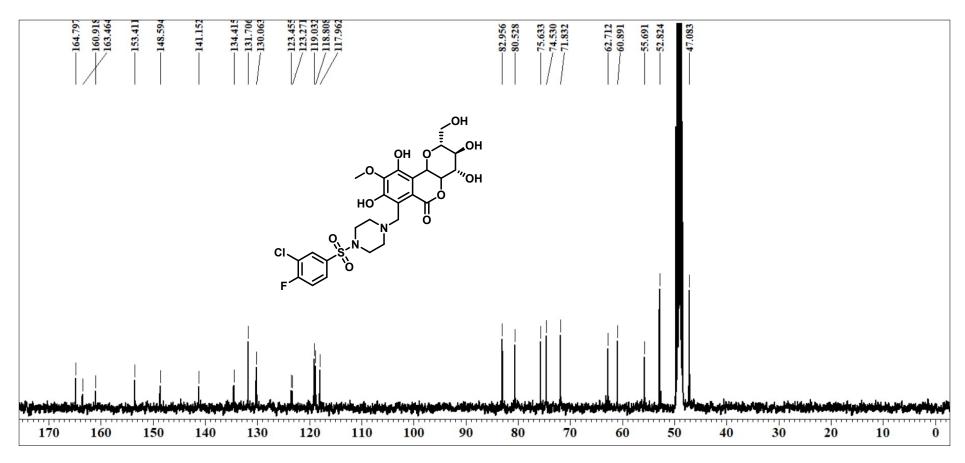


Fig S107: ¹³C NMR SPECTRUM OF COMPOUND **13i** (100 MHz, CD₃OD)

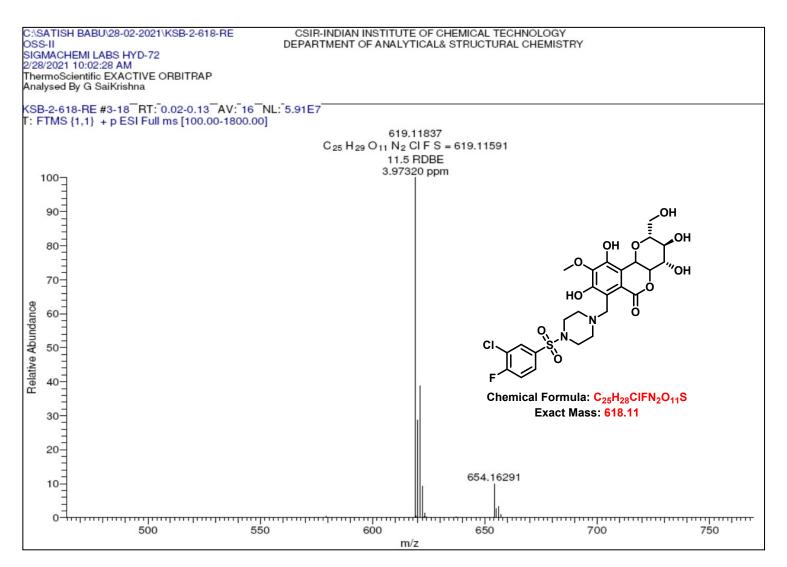


Fig S108: HRESIMS SPECTRUM OF COMPOUND 13i

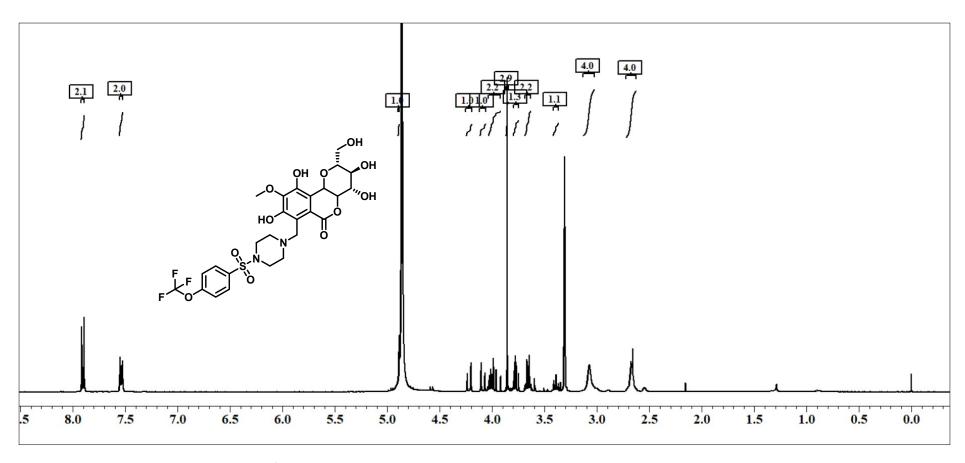


Fig S109: ¹H NMR SPECTRUM OF COMPOUND **13j** (400 MHz, CD₃OD)

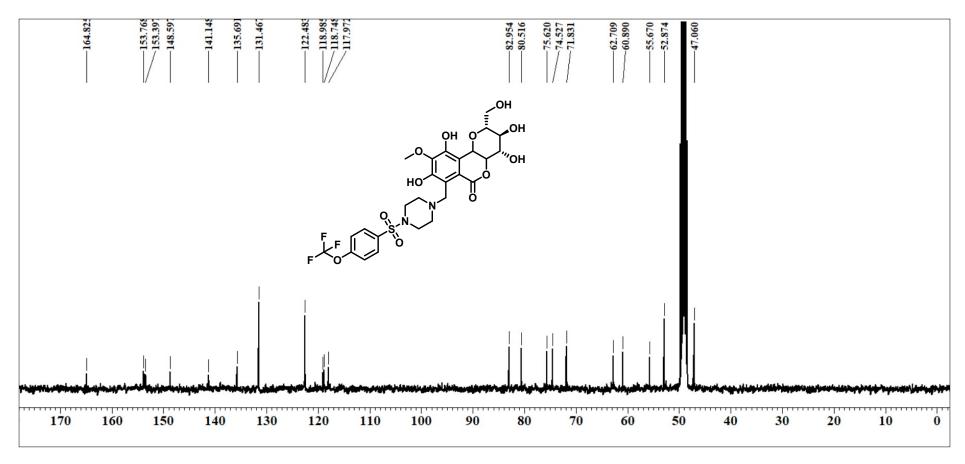


Fig S110: ¹³C NMR SPECTRUM OF COMPOUND **13j** (100 MHz, CD₃OD)

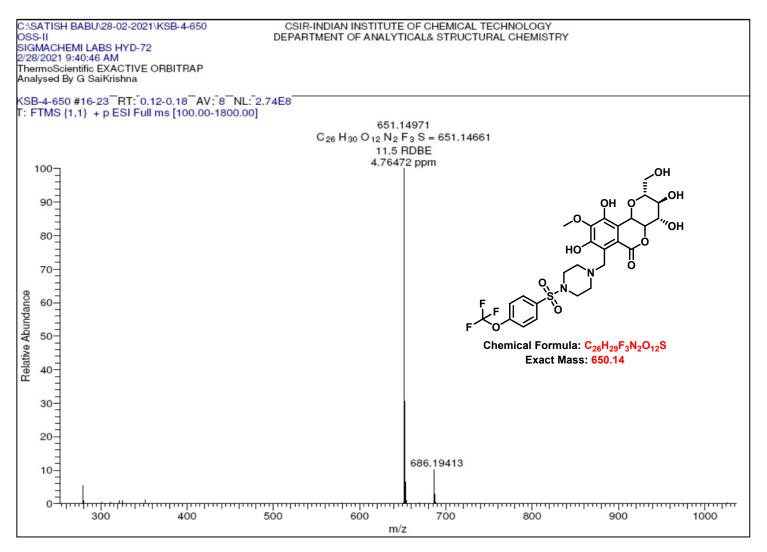


Fig S111: HRESIMS SPECTRUM OF COMPOUND 13j

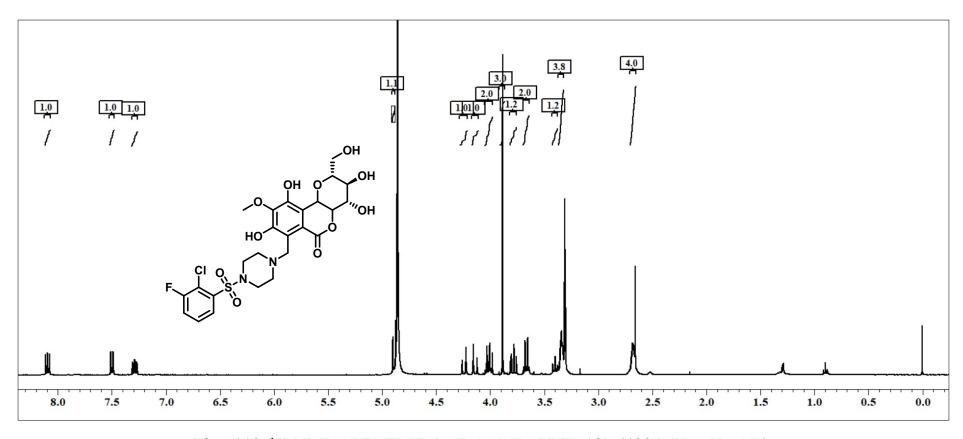


Fig S112: ¹H NMR SPECTRUM OF COMPOUND **13k** (400 MHz, CD₃OD)

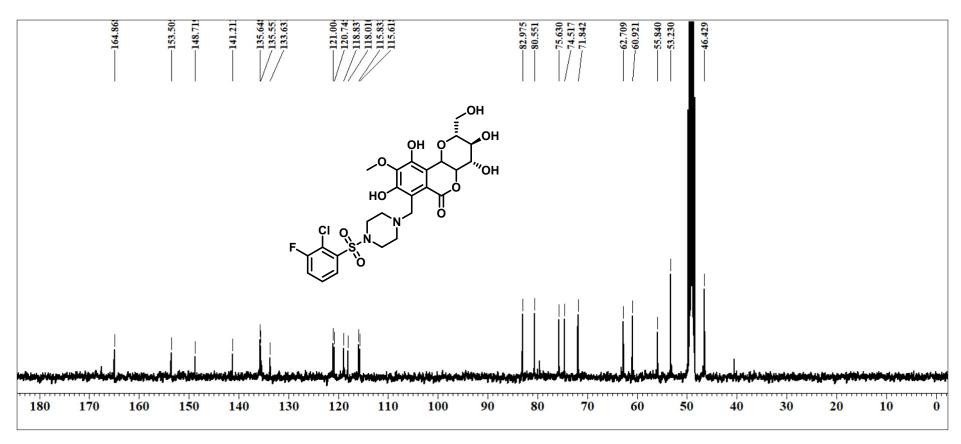


Fig S113: ¹³C NMR SPECTRUM OF COMPOUND **13k** (100 MHz, CD₃OD)

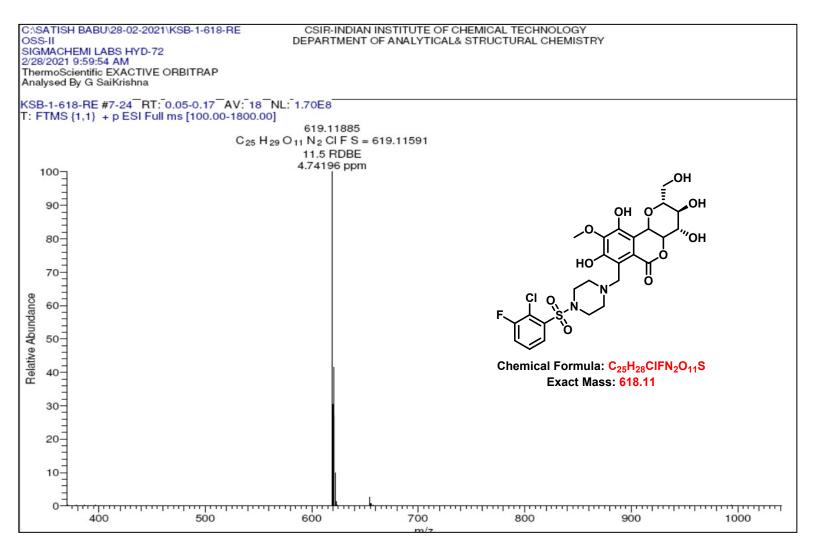


Fig S114: HRESIMS SPECTRUM OF COMPOUND 13k

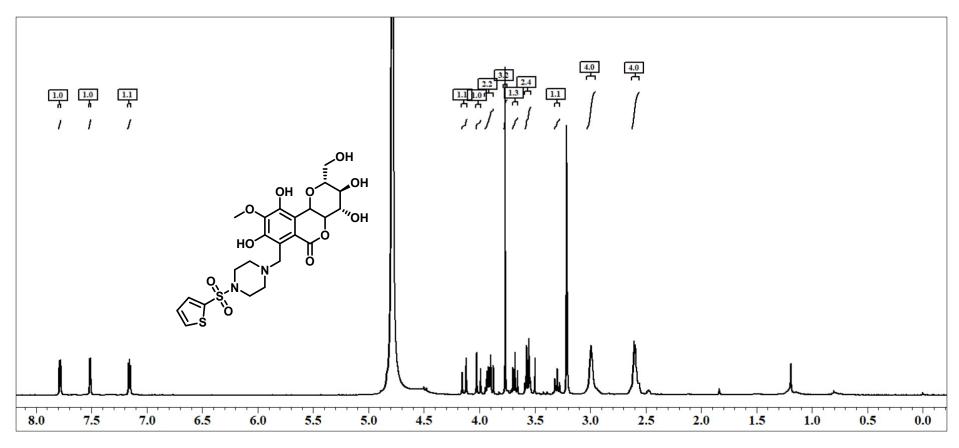


Fig S115: ¹H NMR SPECTRUM OF COMPOUND **13l** (400 MHz, CD₃OD)

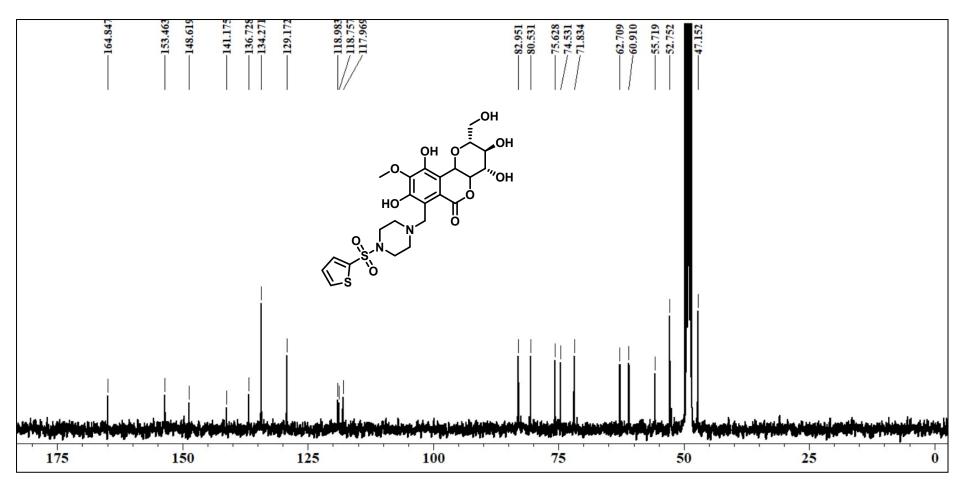
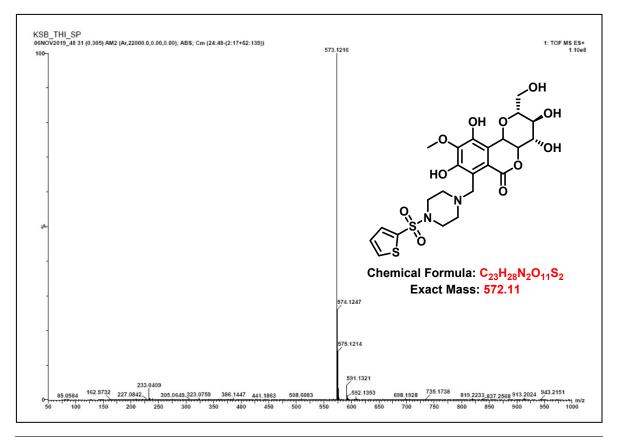



Fig S116: ¹³C NMR SPECTRUM OF COMPOUND **13I** (100 MHz, CD₃OD)

Elemental Composition Report									Page 1
Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3									
Monoisotopic Mass, Even Electron Ions 203 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-23 H: 0-29 N: 0-2 O: 0-11 S: 0-2 Cl: 0-1 KSB_THI_SP 06NOV2019_48 31 (0.305) AM2 (Ar,22000.0,0.00,0.00); ABS; Cm (24:48-(2:17+62:139)) 1: TOF MS ES+ 1.10e+008									
100 85.058 0 100	209.0439.233.04	09 323 50 300	0759 386 350	سلسبنس	508.60 50 500	handanda	16 608.1666 600 650	698.1928 819.2233 700 750 800 850	913.2024 ^{943.2151} 900 950 m/z
Minimum: Maximum:		5.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
573.1216	573.1213	0.3	0.5	10.5	650.0	n/a	n/a	C23 H29 N2 O11 S2	

Fig S117: HRESIMS SPECTRUM OF COMPOUND 131

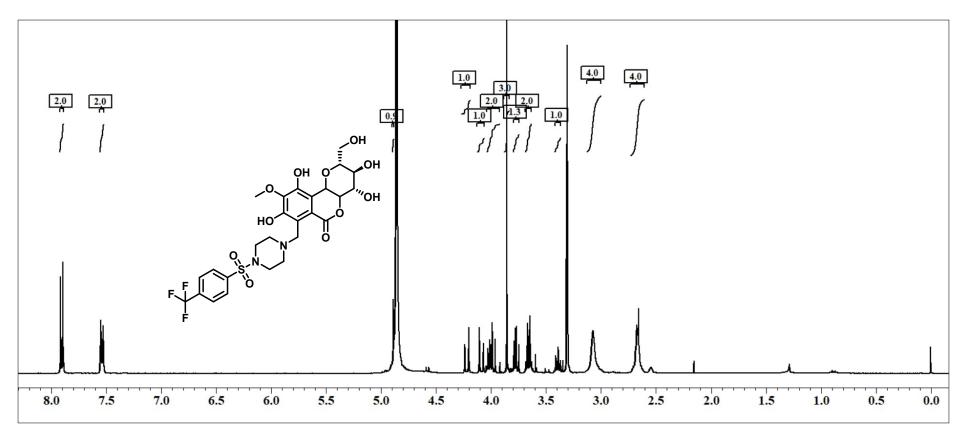


Fig S118: ¹H NMR SPECTRUM OF COMPOUND **13m** (400 MHz, CD₃OD)

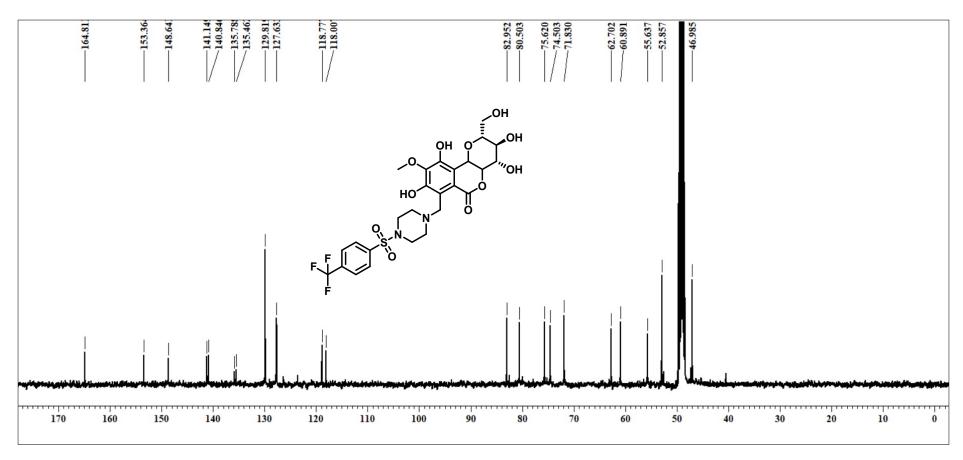


Fig S119: ¹³C NMR SPECTRUM OF COMPOUND **13m** (100 MHz, CD₃OD)

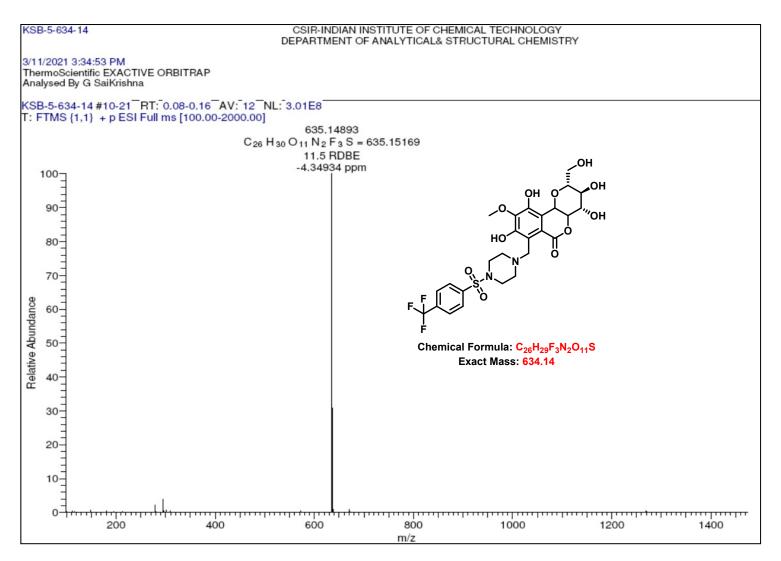


Fig S120: HRESIMS SPECTRUM OF COMPOUND 13

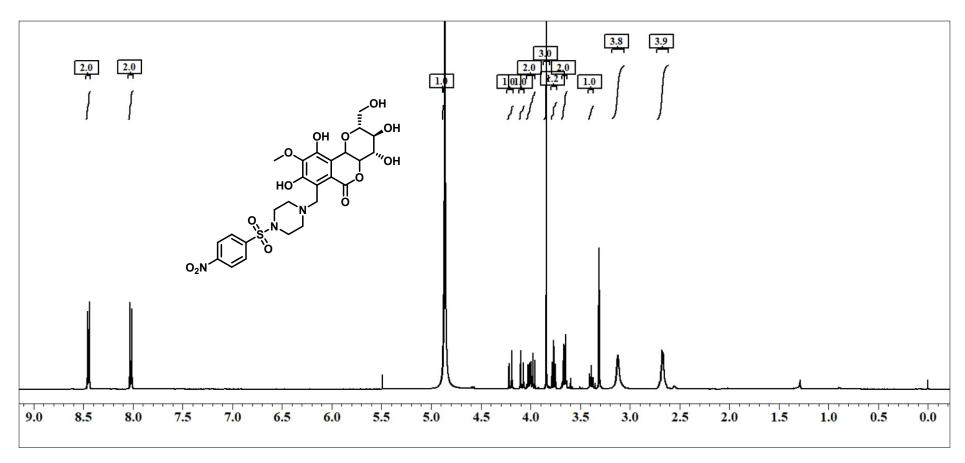


Fig S121: ¹H NMR SPECTRUM OF COMPOUND **13n** (500 MHz, CD₃OD)

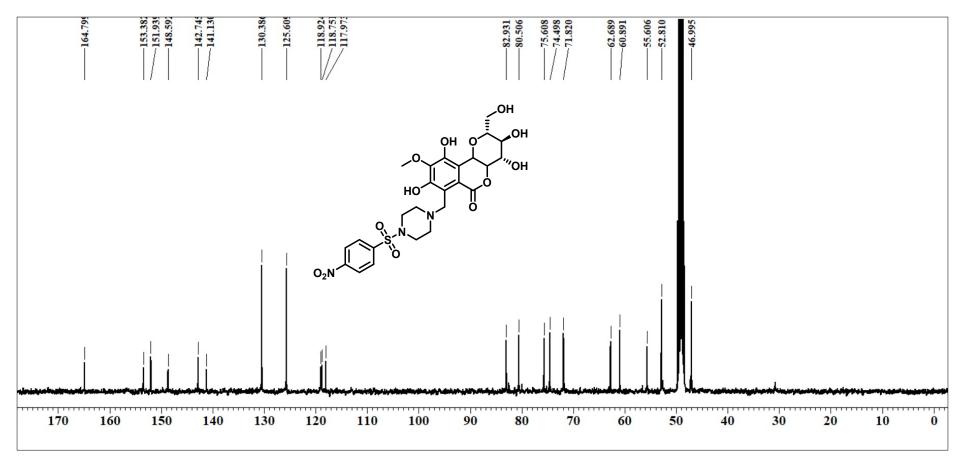


Fig S122: ¹³C NMR SPECTRUM OF COMPOUND **13n** (100 MHz, CD₃OD)

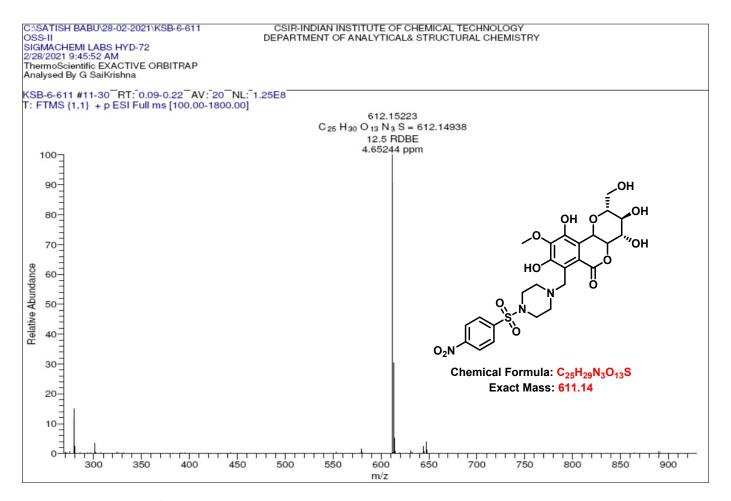


Fig S123: HRESIMS SPECTRUM OF COMPOUND 13n

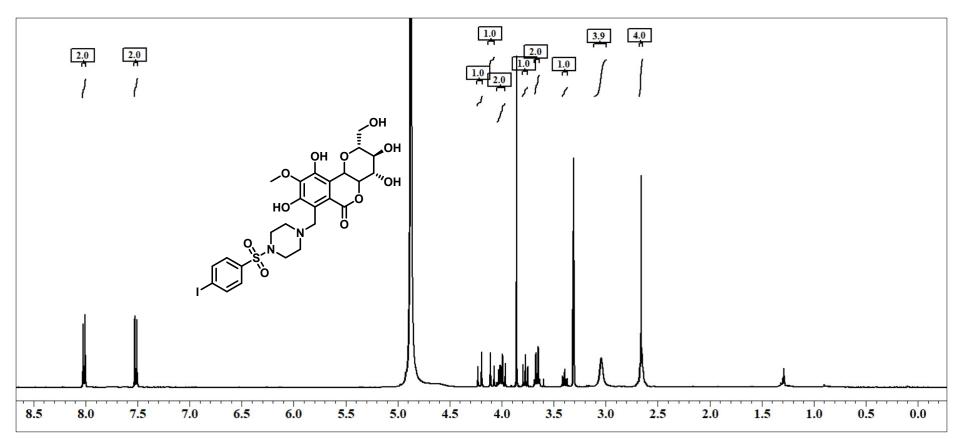


Fig S124: ¹H NMR SPECTRUM OF COMPOUND **130** (400 MHz, CD₃OD)

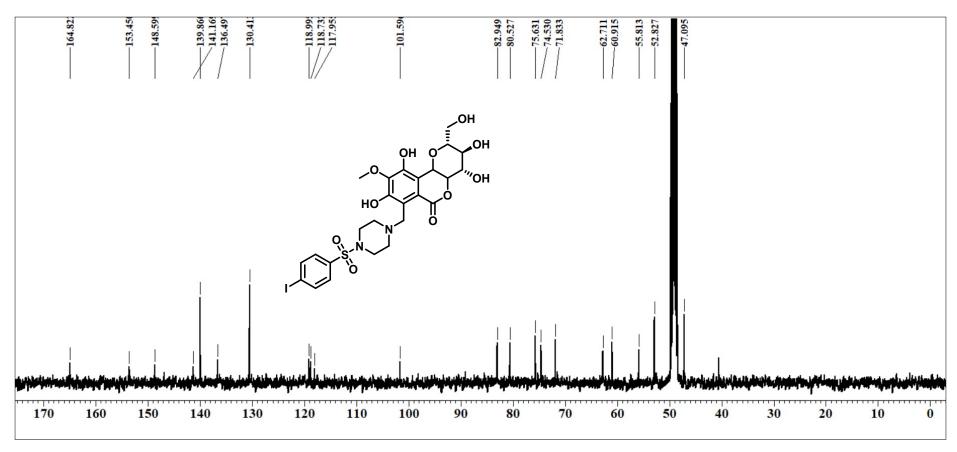


Fig S125: 13 C NMR SPECTRUM OF COMPOUND **130** (100 MHz, CD₃OD)

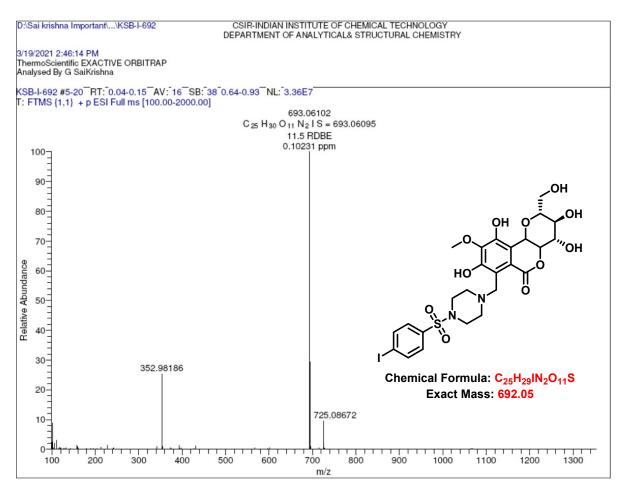


Fig S126: HRESIMS SPECTRUM OF COMPOUND 130